已知等比數(shù)列滿足.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和公式.
(Ⅰ). (Ⅱ),.
解析試題分析:(Ⅰ)為求數(shù)列的通項(xiàng)公式,關(guān)鍵是求等比數(shù)列的公比為,
根據(jù)已知條件,建立的方程即可得到.
(Ⅱ)首先由(Ⅰ)得到的通項(xiàng)公式,直接運(yùn)用等比數(shù)列求和公式可得.
該題突出對(duì)基礎(chǔ)知識(shí)的考查,較為容易.
試題解析:(Ⅰ)設(shè)等比數(shù)列的公比為,
由得① 2分
由得② 4分
兩式作比可得,所以, 5分
把代入②解得, 6分
所以. 7分
(Ⅱ)由(Ⅰ)可得 8分
易得數(shù)列是公比為4的等比數(shù)列,
由等比數(shù)列求和公式可得
. 13分
考點(diǎn):等比數(shù)列的通項(xiàng)公式、求和公式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列的前n項(xiàng)和記為,,點(diǎn)在直線上,n∈N*.
(1)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)設(shè),是數(shù)列的前n項(xiàng)和,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè),,數(shù)列滿足:,.
(Ⅰ)求證數(shù)列是等比數(shù)列(要指出首項(xiàng)與公比);
(Ⅱ)求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,
(1)求,;
(2)設(shè),證明:數(shù)列是等比數(shù)列;
(3)求數(shù)列的前項(xiàng)和為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
各項(xiàng)均為正數(shù)的等比數(shù)列中,.
(1)求數(shù)列通項(xiàng)公式;
(2)若,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列滿足:記數(shù)列的前項(xiàng)和為,
(1)求數(shù)列的通項(xiàng)公式;
(2)求
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,點(diǎn)在函數(shù)的圖像上,(其中)
(Ⅰ)求證數(shù)列是等比數(shù)列;
(Ⅱ)設(shè),求及數(shù)列的通項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列的前項(xiàng)和為,.
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和.
(Ⅲ)若,,求不超過(guò)的最大的整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
己知等比數(shù)列{}的公比為q,前n項(xiàng)和為Sn,且S1,S3,S2成等差數(shù)列.
(I)求公比q;
(II)若,問(wèn)數(shù)列{Tn}是否存在最大項(xiàng)?若存在,求出該項(xiàng)的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com