11.當(dāng)x∈R時(shí),x+$\frac{4}{x}$的取值范圍是( 。
A.(-∞,-4]B.(-∞,-4)∪(4,+∞)C.[4,+∞)D.(-∞,-4]∪[4,+∞)

分析 討論x>0,x<0,運(yùn)用基本不等式a+b≥2$\sqrt{ab}$(a,b>0,a=b取得等號(hào)),即可得到所求范圍.

解答 解:當(dāng)x>0時(shí),x+$\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=4,
當(dāng)且僅當(dāng)x=2時(shí),取得最小值4;
當(dāng)x<0時(shí),x+$\frac{4}{x}$=-[(-x)+(-$\frac{4}{x}$)≤-2$\sqrt{(-x)•\frac{4}{-x}}$=-4,
當(dāng)且僅當(dāng)x=-2時(shí),取得最大值-4.
綜上可得,x+$\frac{4}{x}$的取值范圍是(-∞,-4]∪[4,+∞).
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的取值范圍的求法,注意運(yùn)用分類討論的思想方法,以及基本不等式的運(yùn)用,注意滿足的條件:一正二定三等,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知不等式x2-2x-3<0的解集為A,不等式x2+x-6<0的解集為B.
(1)求A∩B;
(2)若不等式x2+ax+b<0的解集為A∩B,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知角α的終邊經(jīng)過(guò)點(diǎn)P(1,2),則cos2α等于( 。
A.-$\frac{3}{5}$B.$\frac{1}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=|2x-5a|+|2x+1|,g(x)=|x-1|+3.
(1)解為等式|g(x)|<8;
(2)若對(duì)任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.定義在實(shí)數(shù)集上的函數(shù)y=f(x)是偶函數(shù),當(dāng)x≥0時(shí),f(x)=-x2+4x.
(1)求f(x)在R上的表達(dá)式;
(2)求y=f(x)的最大值,并寫出f(x)在R上的單調(diào)區(qū)間(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.某空間幾何體的三視圖(單位:cm)如圖所示,則其體積是6cm3,表面積是20+2$\sqrt{2}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=x2+4xsinα+$\frac{2}{7}$tanα(0<α<$\frac{π}{4}$)有且僅有一個(gè)零點(diǎn).
(Ⅰ)求sin2α的值;
(Ⅱ)若cos2β+2sin2β=$\frac{3}{14}$+sinβ,β∈($\frac{π}{2}$,π),求β-2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在△ABC中,∠B=$\frac{π}{4}$,AB=4$\sqrt{2}$,點(diǎn)D在BC上,且CD=3,cos∠ADC=$\frac{{\sqrt{5}}}{5}$.
(I)求sin∠BAD;  
(Ⅱ)求BD,AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.2017年某地區(qū)高考改革方案出臺(tái),選考科目有:思想政治,歷史,地理,物理,化學(xué),生命科學(xué).要求考生從中自選三門參加高考,甲,乙兩名同學(xué)各自選考3門課程(每門課程被選中的機(jī)會(huì)相等),兩位同學(xué)約定共同選擇思想政治,不選物理,若兩人選擇的課程情況共有36種,則他們選考的3門課程都相同的概率是$\frac{1}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案