精英家教網 > 高中數學 > 題目詳情
19.已知函數f(x)=|2x-5a|+|2x+1|,g(x)=|x-1|+3.
(1)解為等式|g(x)|<8;
(2)若對任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,求實數a的取值范圍.

分析 (1)由||x-1|+3|<8,轉化為-11<|x-1|<5,然后求解不等式即可.
(2)利用條件說明{y|y=f(x)}⊆{y|y=g(x)},通過函數的最值,列出不等式求解即可.

解答 解:(1)由||x-1|+3|<8,得-8<|x-1|+3<8
∴-11<|x-1|<5,∴-4<x<6
∴不等式的解集為{x|-4<x<6}…(5分)
(2)因為任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,
所以{y|y=f(x)}⊆{y|y=g(x)},
又f(x)=|2x-5a|+|2x+1|≥|(2x-5a)-(2x+1)|=|5a+1|,
g(x)=|x-1|+3≥3,所以|5a+1|≥3,解得a≥0.4或a≤-0.8,
所以實數a的取值范圍為a≥0.4或a≤-0.8.…(10分)

點評 本題考查函數的恒成立,絕對值不等式的解法,考查分析問題解決問題的能力以及轉化思想的應用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

9.已知向量$\overrightarrow{a}$=(cosα,sinα)(0≤α<2π),$\overrightarrow$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),且$\overrightarrow{a}$與$\overrightarrow$不共線.
(1)證明向量$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$垂直;
(2)當兩個向量$\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\sqrt{3}$$\overrightarrow$的模相等時,求tanα.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.已知函數f(x)=ax的圖象經過點(-2,9),求f(1)、f(-$\frac{3}{2}$)和f(6.21)的值(精確到0.001).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.已知函數f(x)=sin(ωx+φ)(0<ω<4,|φ|<$\frac{π}{2}$),若f($\frac{π}{6}$)-f($\frac{2π}{3}$)=2,則函數f(x)的單調遞增區(qū)間為( 。
A.[$\frac{kπ}{2}$+$\frac{π}{6}$,$\frac{kπ}{2}$+$\frac{5π}{12}$],k∈ZB.[$\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{π}{6}$],k∈Z
C.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈ZD.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,A,B分別是橢圓的上頂點、右頂點,原點O到直線AB的距離為$\frac{\sqrt{6}}{3}$.
(1)求E的方程;
(2)直線l1,l2的斜率均為$\frac{\sqrt{2}}{2}$,直線l1與E相切于點M(點M在第二象限內),直線l2與E相交于P,Q兩點,MP⊥MQ,求直線l2的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.點P在直線2x-y+1=0上,O為坐標原點,則|OP|的最小值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{1}{5}$C.$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.當x∈R時,x+$\frac{4}{x}$的取值范圍是( 。
A.(-∞,-4]B.(-∞,-4)∪(4,+∞)C.[4,+∞)D.(-∞,-4]∪[4,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.已知隨機變量ξ服從正態(tài)分布N(3,4),則E(2ξ+1)與D(2ξ+1)的值分別為(  )
A.13,4B.13,8C.7,8D.7,16

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.在△ABC中,內角A,B,C的對邊分別為a,b,c.已知cosA=$\frac{2}{3}$,sinB=$\sqrt{5}$cosC,并且a=$\sqrt{2}$,則△ABC的面積為$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

同步練習冊答案