一個均勻的正四面體面上分別涂有1,2,3,4四個數(shù)字,現(xiàn)隨機投擲兩次,正四面體面朝下的數(shù)字分別為b,c,
(Ⅰ)記z=(b-3)2+(c-3)2,求z=4的概率;
(Ⅱ)若方程x2-bx-c=0至少有一根a∈{1,2,3,4},就稱該方程為“漂亮方程”,求方程為“漂亮方程”的概率。
解:(Ⅰ)因為是投擲兩次,因此基本事件(b,c)共有4×4=16個,
當z=4時,(b,c)的所有取值為(1,3),(3,1),
所以;
(Ⅱ)①若方程一根為x=1,則1-b-c=0,即b+c=1,不成立;
②若方程一根為x=2,則4-2b-c=0,即2b+c=4,所以;
③若方程一根為x=3,則9-3b-c=0,即3b+c=9,所以;
④若方程一根為x=4,則16-4b-c=0.即4b+c=16,所以;
綜合①②③④知,(b,c)的所有可能取值為(1,2),(2,3),(3,4),
所以,“漂亮方程”共有3個,方程為“漂亮方程”的概率為。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一個均勻的正四面體面上分別涂有1、2、3、4四個數(shù)字,現(xiàn)隨機投擲兩次,正四面體面朝下的數(shù)字分別為b、c.
(Ⅰ)記z=(b-3)2+(c-3)2,求z=4的概率;
(Ⅱ)若方程x2-bx-c=0至少有一根a∈1,2,3,4,就稱該方程為“漂亮方程”,求方程為“漂亮方程”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個均勻的正四面體的四個面上分別涂有1,2,3,4四個數(shù)字,現(xiàn)隨機投擲兩次,正四面體面朝下的數(shù)字分別為x1,x2,記ξ=(x1-3)2+(x2-3)2
(1)分別求出ξ取得最大值和最小值時的概率;
(2)求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個均勻的正四面體面上分別涂有1、2、3、4四個數(shù)字,現(xiàn)隨機投擲兩次,正四面體面朝下的數(shù)字分別為b、c.若方程x2-bx-c=0至少有一根a∈{1,2,3,4},就稱該方程為“漂亮方程”,方程為“漂亮方程”的概率為
3
16
3
16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年青島市質(zhì)檢二理)  (12分) 一個均勻的正四面體的四個面上分別涂有1,2,3,4四個數(shù)字,現(xiàn)隨機投擲兩次,正四面體面朝下的數(shù)字分別為,記

(Ⅰ)分別求出取得最大值和最小值時的概率;

(Ⅱ)求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省樂清市高三第一次月考理科數(shù)學試卷(解析版) 題型:解答題

一個均勻的正四面體的四個面上分別涂有1,2,3,4四個數(shù)字,現(xiàn)隨機投擲兩次,正四面體面朝下的數(shù)字分別為,記

(1)分別求出取得最大值和最小值時的概率;  (2)求的分布列及數(shù)學期望.

 

查看答案和解析>>

同步練習冊答案