已知雙曲線
的左右焦點為
,P為雙曲線右支上
的任意一點,若
的最小值為8a,則雙曲線的離心率的取值范圍是
。
試題分析:雙曲線
的左右焦點為
,P為雙曲線右支上的任
意一點,所以
,即
.
所以
,
當(dāng)且僅當(dāng)
,即
時取等號,所以
,
因為
,
,所以
.
點評:合理利用雙曲線的定義,巧妙運用基本不等式是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(1)設(shè)橢圓
:
與雙曲線
:
有相同的焦點
,
是橢圓
與雙曲線
的公共點,且
的周長為
,求橢圓
的方程;
我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓
”的方程為
.設(shè)“盾圓
”上的任意一點
到
的距離為
,
到直線
的距離為
,求證:
為定值;
(3)由拋物線弧
:
(
)與第(1)小題橢圓弧
:
(
)所合成的封閉曲線為“盾圓
”.設(shè)過點
的直線與“盾圓
”交于
兩點,
,
且
(
),試用
表示
;并求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
直線
與橢圓
交于
,
兩點,已知
,
,若
且橢圓的離心率
,又橢圓經(jīng)過點
,
為坐標(biāo)原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線
過橢圓的焦點
(
為半焦距),求直線
的斜率
的值;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
是雙曲線的兩個焦點,Q是雙曲線上任一點(不是頂點),從某一焦點引
的平分線的垂線,垂足為P,則點P的軌跡是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
方程
+
=1(
{1,2,3,4,…,2013})的曲線中,所有圓面積的和等于
,離心率最小的橢圓方程為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
若橢圓
的中心在原點,焦點在
軸上,短軸的一個端點與左右焦點
、
組成一個正三角形,焦點到橢圓上的點的最短距離為
.
(1)求橢圓
的方程;
(2)過點
作直線
與橢圓
交于
、
兩點,線段
的中點為
,求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓
的焦點坐標(biāo)是______________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)P為橢圓上一點,且∠PF
1F
2=30
o,∠PF
2F
1=45
o,其中F
1,F(xiàn)
2為橢圓的兩個焦點,則橢圓的離心率e的值等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
直線
與曲線
的交點的個數(shù)是
個.
查看答案和解析>>