【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.
【答案】證明:(Ⅰ)∵PA⊥底面ABCD,∴PA⊥CD,又AC⊥CD,PA∩AC=A,
故CD⊥平面PAC.
又AE平面PAC,∴CD⊥AE.
(Ⅱ)由題意:AB⊥AD,
∴AB⊥平面PAD,從而AB⊥PD.
又AB=BC,且∠ABC=60°,
∴AC=AB,從而AC=PA.
又E為PC之中點(diǎn),∴AE⊥PC.
由(Ⅰ)知:AE⊥CD,∴AE⊥平面PCD,從而AE⊥PD.
又AB∩AE=A,
故PD⊥平面ABE
【解析】(1)根據(jù)題意結(jié)合已知條件利用線面垂直的性質(zhì)定理得到線線垂直再結(jié)合線面垂直的判定定理即可得出結(jié)論。(2)利用已知的線面垂直得出線線垂直再結(jié)合(1)的結(jié)論由線面垂直的判定定理即可得證。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年3月14日,“ofo共享單車”終于來到蕪湖,ofo共享單車又被親切稱作“小黃車”是全球第一個(gè)無樁共享單車平臺(tái),開創(chuàng)了首個(gè)“單車共享”模式.相關(guān)部門準(zhǔn)備對該項(xiàng)目進(jìn)行考核,考核的硬性指標(biāo)是:市民對該項(xiàng)目的滿意指數(shù)不低于0.8,否則該項(xiàng)目需進(jìn)行整改,該部門為了了解市民對該項(xiàng)目的滿意程度,隨機(jī)訪問了使用共享單車的100名市民,并根據(jù)這100名市民對該項(xiàng)目滿意程度的評(píng)分,繪制了如下頻率分布直方圖:
(I)為了了解部分市民對“共享單車”評(píng)分較低的原因,該部門從評(píng)分低于60分的市民中隨機(jī)抽取2人進(jìn)行座談,求這2人評(píng)分恰好都在[50,60)的概率;
(II)根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí),判斷該項(xiàng)目能否通過考核,并說明理由.
(注:滿意指數(shù)= )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a、b、c分別是△ABC的三個(gè)內(nèi)角A、B、C的對邊.
(1)若△ABC面積S△ABC= ,c=2,A=60°,求a、b的值;
(2)若a=ccosB,且b=csinA,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的是( )
A.斜率相等的兩條直線一定平行
B.若兩條不重合的直線l1 , l2平行,則它們的斜率一定相等
C.直線l1:x=1與直線l2:x=2不平行
D.直線l1:( -1)x+y=2與直線l2:x+( +1)y=3平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(-1,1),B(1,1),C(2, +1),
(1)求直線AB和AC的斜率.
(2)若點(diǎn)D在線段AB(包括端點(diǎn))上移動(dòng)時(shí),求直線CD的斜率的變化范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐 中, 平面 , ∥ , ,
(1)求證: 平面
(2)求證:平面 平面
(3)設(shè)點(diǎn) 為 中點(diǎn),在棱 上是否存在點(diǎn) ,使得 ∥平面 ?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列{an}中,a1=2,前n項(xiàng)和為Sn , 若數(shù)列{an+1}也是等比數(shù)列,則Sn等于( ).
A.2n+1-2
B.3n
C.2n
D.3n-1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的離心率為 ,右焦點(diǎn)為( ,0)
(1)求橢圓C的方程;
(2)若過原點(diǎn) 作兩條互相垂直的射線,與橢圓交于A,B兩點(diǎn),求證:點(diǎn)O到直線AB的距離為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(x0 , y0)在x2+y2=r2(r>0)外,則直線x0x+y0y=r2與圓x2+y2=r2的位置關(guān)系為( )
A.相交
B.相切
C.相離
D.相交、相切、相離三種情況均有可能
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com