已知曲線 y = x3 + x-2 在點(diǎn) P0 處的切線  平行直線
4x-y-1=0,且點(diǎn) P0 在第三象限,
求P0的坐標(biāo); ⑵若直線  , 且 l 也過(guò)切點(diǎn)P0 ,求直線l的方程.
(1)的坐標(biāo)為 ⑵

試題分析:(1)根據(jù)曲線方程求出導(dǎo)函數(shù),因?yàn)橐阎本的斜率為4,根據(jù)切線與已知直線平行得到斜率相等都為4,所以令導(dǎo)函數(shù)等于4得到關(guān)于x的方程,求出方程的解,即為切點(diǎn)的橫坐標(biāo),代入曲線方程即可求出切點(diǎn)的縱坐標(biāo),又因?yàn)榍悬c(diǎn)在第3象限,進(jìn)而寫(xiě)出滿(mǎn)足題意的切點(diǎn)的坐標(biāo);
(2)由直線l1的斜率為4,根據(jù)兩直線垂直時(shí)斜率的乘積為-1,得到直線l的斜率為-,又根據(jù)(1)中求得的切點(diǎn)坐標(biāo),寫(xiě)出直線l的方程即可.
⑴由,得
由已知得,解之得.當(dāng)時(shí),;當(dāng)時(shí),
又∵點(diǎn)在第三象限,
∴切點(diǎn)的坐標(biāo)為
⑵∵直線,的斜率為4,∴直線l的斜率為,
∵l過(guò)切點(diǎn),點(diǎn)的坐標(biāo)為)
∴直線l的方程為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)的導(dǎo)函數(shù)原點(diǎn)處的部分圖象大致為  (   )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知y=f(x)是奇函數(shù),當(dāng)x∈(0,2)時(shí),f(x)=ln x-ax,當(dāng)x∈(-2,0)時(shí),f(x)的最小值為1,則a的值等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)=x-sinx-cosx的圖象在點(diǎn)A(x0,y0)處的切線斜率為1,則tanx0=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x2-(1+2a)x+aln x(a為常數(shù)).
(1)當(dāng)a=-1時(shí),求曲線y=f(x)在x=1處切線的方程;
(2)當(dāng)a>0時(shí),討論函數(shù)y=f(x)在區(qū)間(0,1)上的單調(diào)性,并寫(xiě)出相應(yīng)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(14分)(2011•陜西)設(shè)f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的單調(diào)區(qū)間和最小值;
(Ⅱ)討論g(x)與的大小關(guān)系;
(Ⅲ)求a的取值范圍,使得g(a)﹣g(x)<對(duì)任意x>0成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)
(1)若求函數(shù)的極值點(diǎn)及相應(yīng)的極值;
(2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)在R上可導(dǎo),且,則(   )
A.B.C.D.無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案