16.下列各式中不等于n!的是(  )
A.$\frac{1}{n+1}$A${\;}_{n+1}^{n+1}$B.A${\;}_{n}^{n}$C.nA${\;}_{n-1}^{n-1}$D.${A}_{n+1}^{n}$

分析 利用排列數(shù)計算公式即可判斷出結論.

解答 解:A.$\frac{1}{n+1}$${A}_{n+1}^{n+1}$=$\frac{n+1}{n+1}×n!$=n!,正確;
B.${A}_{n}^{n}$=n!,正確;
C.$n{A}_{n-1}^{n-1}$=n!,正確;
D.${A}_{n+1}^{nz}$=(n+1)!≠n!,不成立.
故選:D.

點評 本題考查了排列數(shù)計算公式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.若數(shù)列{an}滿足a1=9,${a_{n+1}}=\frac{1}{3}{a_n}$,(n∈N*),則a5=$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則$f(x-2)<f(\frac{1}{2})$的解集是( 。
A.(0,1)B.(1,2)C.$(\frac{3}{2},\frac{5}{2})$D.$(\frac{5}{2},\frac{7}{2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在△ABC中,角A,B,C所對的邊分別為$a,b,c,b=\sqrt{7},c=1,B={120°}$
(1)求a;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.2與6的等比中項為( 。
A.4B.±4C.$2\sqrt{3}$D.±$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某市為了提升市民素質(zhì)和城市文明程度,促進經(jīng)濟發(fā)展有大的提速,對市民進行了“生活滿意”度的調(diào)查.現(xiàn)隨機抽取30位市民,對他們的生活滿意指數(shù)進行統(tǒng)計分析,得到如下分布列:
滿意級別  非常滿意    滿意   一般  不滿意
滿意指數(shù)(分)     90     60   30    0
人數(shù)(個)     14     10   5    1
(I)求這30位市民滿意指數(shù)的平均值;
(II)以這30人為樣本的滿意指數(shù)來估計全市市民的總體滿意指數(shù),若從全市市民(人數(shù)很多)中任選3人,記ξ表示抽到滿意級別為“非常滿意或滿意”的市民人數(shù).求ξ的分布列;
(III)從這30位市民中,先隨機選一個人,記他的滿意指數(shù)為m,然后再隨機選另一個人,記他的滿意指數(shù)為n,求n≥m+6的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知數(shù)列{an}的首項為6,且滿足an=3an-1-6(n>2).
(1)求證數(shù)列{an-3}為等比數(shù)列,并求出數(shù)列{an}的通項公式.
(2)設bn=an+2n-3,求數(shù)列{bn}的通項公式及前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若函數(shù)f(x)具有性質(zhì):①f(x)為偶函數(shù),②對任意x∈R都有f(x)=f($\frac{π}{2}$+x).則函數(shù)f(x)的解析式可以是:f(x)=cos4x(只需寫出滿足條件的一個解析式即可)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設P={x|x2-2x-3≤0},a=$\sqrt{2}$,則下列關系中正確的是( 。
A.a⊆PB.a∉PC.{a}⊆PD.{a}∈P

查看答案和解析>>

同步練習冊答案