6.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=1,且(1-b)(sinA+sinB)=(c-b)sinC,則△ABC周長的最大值為3.

分析 由已知可得(a-b)(sinA+sinB)=(c-b)sinC,由正弦定理可得:(a-b)(a+b)=(c-b)c,利用余弦定理可得A,再利用正弦定理,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的性質(zhì)即可得出.

解答 解:在ABC中,∵a=1,(1-b)(sinA+sinB)=(c-b)sinC,
∴(a-b)(sinA+sinB)=(c-b)sinC,
由正弦定理可得:(a-b)(a+b)=(c-b)c,
化為:b2+c2-a2=bc.
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,A∈(0,π),
∴A=$\frac{π}{3}$.
由正弦定理可得:$\frac{sinB}=\frac{c}{sinC}=\frac{1}{sin\frac{π}{3}}=\frac{2\sqrt{3}}{3}$,
∴b=$\frac{2\sqrt{3}}{3}$sinB,c=$\frac{2\sqrt{3}}{3}$sinC,
∴△ABC周長=1+b+c=1+$\frac{2\sqrt{3}}{3}$sinB+$\frac{2\sqrt{3}}{3}$sinC=1+$\frac{2\sqrt{3}}{3}$[sinB+sin($\frac{2\sqrt{3}}{3}$-B)]=1+2sin(B+$\frac{π}{6}$),
∵B∈(0,$\frac{2\sqrt{3}}{3}$),∴sin(B+$\frac{π}{6}$)∈($\frac{1}{2}$,1],
∴△ABC周長的取值范圍是(2,3].
∴△ABC周長的最大值為3.
故答案為:3.

點評 本題考查了正弦定理、余弦定理、和差化積、三角函數(shù)求值,正弦函數(shù)的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i為虛數(shù)單位,a為實數(shù),復(fù)數(shù)z=(1-2i)(a+i)在復(fù)平面內(nèi)對應(yīng)的點為M,則“a>0”是“點M在第四象限”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.分別和兩條異面直線平行的兩條直線的位置關(guān)系是(  )
A.一定平行B.一定異面C.相交或異面D.一定相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.為了研究子女與父母吸煙的關(guān)系,調(diào)查了一千多名青少年及其家長,數(shù)據(jù)如下:
父母吸煙父母不吸煙總計
子女吸煙23783
子女不吸煙678
總計1520
完善上表,并分別利用等高條形圖和獨立性檢驗方法判斷父母吸煙對子女吸煙是否有影響?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.對某電子元件進(jìn)行壽命追蹤調(diào)查,情況如下.
壽命(h)100~200200~300300~400400~500500~600
個  數(shù)2030804030
(1)列出頻率分布表;
(2)畫出頻率分布直方圖及頻率分布折線圖;
(3)估計元件壽命在100~400h以內(nèi)的在總體中占的比例;
(4)從頻率分布直方圖可以看出電子元件壽命的眾數(shù),平均數(shù)和中位數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),$\overrightarrow{c}$=$\overrightarrow{a}$+λ$\overrightarrow$(λ∈R),向量$\overrightarrow7lwk4yn$如圖所示,若$\overrightarrow{c}$∥$\overrightarrowm2cje7m$,則λ=(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$-\frac{4}{3}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=x3+ax-2在區(qū)間[1,+∞)內(nèi)是增函數(shù),則實數(shù)a的取值范圍是[-3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)y=x2+2ax+1(-1≤x≤2)的最小值為-4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某射擊隊的隊員為在射擊錦標(biāo)賽上取得優(yōu)異成績,正在加緊備戰(zhàn),經(jīng)過近期訓(xùn)練,某隊員射擊一次,命中7~10環(huán)的概率如表所示:
命中環(huán)數(shù)10環(huán)9環(huán)8環(huán)7環(huán)
概率0.300.280.180.12
求該射擊隊員射擊一次,
(1)射中9環(huán)或10環(huán)的概率;
(2)至少命中8環(huán)的概率;
(3)命中不足8環(huán)的概率.

查看答案和解析>>

同步練習(xí)冊答案