【題目】某三棱錐的三視圖如圖所示,則該三棱錐的表面積是( )
A.2+
B.4+
C.2+2
D.5
【答案】C
【解析】解:根據(jù)三視圖可判斷直觀圖為: OA⊥面ABC,AC=AB,E為BC中點(diǎn),
EA=2,EC=EB=1,OA=1,
∴可得AE⊥BC,BC⊥OA,
運(yùn)用直線平面的垂直得出:BC⊥面AEO,AC= ,OE=
∴S△ABC= 2×2=2,S△OAC=S△OAB= ×1= .
S△BCO= 2× = .
故該三棱錐的表面積是2+2 ,
故選:C.
根據(jù)三視圖可判斷直觀圖為:OA⊥面ABC,AC=AB,E為BC中點(diǎn),EA=2,EA=EB=1,OA=1,:BC⊥面AEO,AC= ,OE=
判斷幾何體的各個(gè)面的特點(diǎn),計(jì)算邊長,求解面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2012年,商品價(jià)格一度成為社會(huì)熱點(diǎn)話題,某種新產(chǎn)品投放市場的100天中,前40天價(jià)格呈直線上升,由于政府及時(shí)采取有效措施,從而使后60天的價(jià)格呈直線下降,現(xiàn)統(tǒng)計(jì)出其中4天的價(jià)格如下表
時(shí)間 | 第4天 | 第32天 | 第60天 | 第90天 |
價(jià)格(元) | 23 | 30 | 22 | 7 |
(1)寫出價(jià)格f(x)關(guān)于時(shí)間x的函數(shù)關(guān)系式(x表示投放市場的第x天);
(2)銷售量g(x)與時(shí)間x的函數(shù)關(guān)系: (1≤x≤100,且x∈N),則該產(chǎn)品投放市場第幾天銷售額最高?最高為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A,B,C所對的邊分別為a,b,c,已知sinA+sinC=psinB且 .若角B為銳角,則p的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)f(x)滿足f(x+1)﹣f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實(shí)數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是等差數(shù)列,下列結(jié)論中正確的是( )
A.若a1+a2>0,則a2+a3>0
B.若a1+a3<0,則a1+a2<0
C.若0<a1<a2 , 則a2
D.若a1<0,則(a2﹣a1)(a2﹣a3)>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin2x+cos2x﹣m在[0, ]上有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是( )
A.(﹣1,2)
B.[1,2)
C.(﹣1,2]
D.[1,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,與y= 的奇偶性和單調(diào)性都相同的是( )
A.f(x)=x﹣1
B.f(x)=x
C.f(x)=x2
D.f(x)=x3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1 , F2是橢圓和雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn).且∠F1PF2= ,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為( )
A.
B.
C.3
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)镽的奇函數(shù)f(x)滿足f(log2x)= .
(1)求函數(shù)f(x)的解析式;
(2)判斷并證明f(x)在定義域 R的單調(diào)性;
(3)若對任意的t∈R,不等式f(t2﹣2t)+f(3t2﹣k)<0恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com