17.已知$cos(\frac{π}{6}-α)=\frac{{\sqrt{3}}}{3}$,則$cos(\frac{5π}{6}+α)$+${sin^2}(α-\frac{π}{6})$=$\frac{2-\sqrt{3}}{3}$.

分析 利用同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式,求得要求式子的值.

解答 解:∵已知$cos(\frac{π}{6}-α)=\frac{{\sqrt{3}}}{3}$,則$cos(\frac{5π}{6}+α)$+${sin^2}(α-\frac{π}{6})$=cos[π-($\frac{π}{6}$-α)]+${sin}^{2}[π-(\frac{π}{6}-α)]$=-cos($\frac{π}{6}$-α)+${sin}^{2}(\frac{π}{6}-α)$
=-cos($\frac{π}{6}$-α)+1-${cos}^{2}(\frac{π}{6}-α)$=-$\frac{\sqrt{3}}{3}$+(1-$\frac{1}{3}$)=$\frac{2-\sqrt{3}}{3}$,
故答案為:$\frac{2-\sqrt{3}}{3}$.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,以及三角函數(shù)在各個(gè)象限中的符號,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2+ax+b(a,b是實(shí)數(shù)),g(x)=2x2-4x-16
(1)求不等式g(x)<0的解集?
(2)若|f(x)|≤|g(x)|對任意的實(shí)數(shù)都成立,求a,b?
(3)在(2)的條件下,若對一切x>2,均有f(x)≥(m+2)x-m-15成立,求實(shí)數(shù)m的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1+x),x≥0}\\{lo{g}_{\frac{1}{2}}(1-x),x<0}\end{array}\right.$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)對任意的兩個(gè)實(shí)數(shù)x1,x2,求證:當(dāng)x1+x2>0時(shí),f(x1)+f(x2)>0;
(3)對任何實(shí)數(shù)x,f(e2x-a)+f(3-2ex)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.二進(jìn)制數(shù)110011(2)化為十進(jìn)制數(shù)為(  )
A.51B.52C.25223D.25004

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax3+bx在x=2處取得極值為-16
(1)求a,b的值;
(2)若f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在數(shù)列{an}中,${a_1}=4,{a_{n+1}}=2{a_n}-1({n∈{N^*}})$,則a4等于(  )
A.7B.13C.25D.49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線方程為4x-3y=0,則雙曲線的離心率為$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.當(dāng)今信息時(shí)代,眾多高中生也配上了手機(jī).某校為研究經(jīng)常使用手機(jī)是否對學(xué)習(xí)成績有影響,隨機(jī)抽取高三年級50名理科生的一次數(shù)學(xué)周練成績,并制成下面的2×2列聯(lián)表:
及格不及格合計(jì)
很少使用手機(jī)20626
經(jīng)常使用手機(jī)101424
合計(jì)302050
(1)判斷是否有97.5%的把握認(rèn)為經(jīng)常使用手機(jī)對學(xué)習(xí)成績有影響?
(2)從這50人中,選取一名很少使用手機(jī)的同學(xué)記為甲和一名經(jīng)常使用手機(jī)的同學(xué)記為乙,解一道數(shù)學(xué)題,甲、乙獨(dú)立解出此題的概率分別為P1,P2,且P2=0.5,若|P1-P2|≥0.4,則此二人適合結(jié)為學(xué)習(xí)上互幫互助的“學(xué)習(xí)師徒”,記X為兩人中解出此題的人數(shù),若X的數(shù)學(xué)期望E(X)=1.4,問兩人是否適合結(jié)為“學(xué)習(xí)師徒”?
參考公式及數(shù)據(jù):${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥K00.100.050.0250.010
K02.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(Ⅰ)已知a>0,b>0,a+b=1,求證:$\frac{1}{a}+\frac{1}+\frac{1}{ab}≥8$;
(Ⅱ)解不等式:|x-1|+|x+2|≥5.

查看答案和解析>>

同步練習(xí)冊答案