【題目】中國古代數(shù)學(xué)經(jīng)典《九章算術(shù)》系統(tǒng)地總結(jié)了戰(zhàn)國、秦、漢時期的數(shù)學(xué)成就,書中將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的三棱錐稱之為鱉臑,如圖為一個陽馬與一個鱉臑的組合體,已知平面,四邊形為正方形,,若鱉臑的外接球的體積為,則陽馬的外接球的表面積等于______。

【答案】

【解析】

將鱉臑放入長方體中,利用長方體體對角線長表示出鱉臑半徑,利用外接球體積求解出;通過長度關(guān)系可確定陽馬的外接球球心為中點,從而可得半徑,代入表面積公式求得外接球表面積.

鱉臑可看做如下圖所示的長方體的一部分:

則長方體外接球即為鱉臑的外接球

外接球半徑為:

連接,,交于,取中點,連接

可知:

可知為陽馬的外接球球心,則外接球半徑

陽馬的外接球表面積

本題正確結(jié)果:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《海島算經(jīng)》是中國學(xué)者劉徽編撰的一部測量數(shù)學(xué)著作,現(xiàn)有取自其中的一個問題:今有望海島,立兩表齊高三丈,前后相去千步,今后表與前表參相直,從前表卻行一百二十三步,人目著地,取望島峰,與表末參合,從后表卻行一百二十七步,人目著地,取望島峰,亦與表末參合,問島高幾何?用現(xiàn)代語言來解釋,其意思為:立兩個三丈高的標(biāo)桿,之間距離為步,兩標(biāo)桿的底端與海島的底端在同一直線上,從第一個標(biāo)桿處后退123步,人眼貼地面,從地上處仰望島峰,三點共線;從后面的一個標(biāo)桿處后退127步,從地上處仰望島峰,三點也共線,則海島的高為( )(古制:1步=6尺,1里=180丈=1800尺=300步)

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海洋藍(lán)洞是地球罕見的自然地理現(xiàn)象,被喻為“地球留給人類保留宇宙秘密的最后遺產(chǎn)”,我國擁有世界上最深的海洋藍(lán)洞,若要測量如圖所示的藍(lán)洞的口徑兩點間的距離,現(xiàn)在珊瑚群島上取兩點,,測得,,,則,兩點的距離為___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位有4位同事各有一輛私家車,車牌尾數(shù)分別是0,1,25,為遵守所在城市元月15日至184天的限行規(guī)定(奇數(shù)日車牌尾數(shù)為奇數(shù)的車通行,偶數(shù)日車牌尾數(shù)為偶數(shù)的車通行),四人商議拼車出行,每天任選一輛符合規(guī)定的車,但甲的車(車牌尾數(shù)為2)最多只能用一天,則不同的用車方案種數(shù)是(

A.4B.12C.16D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為1的正方體中,點是對角線上的動點(點不重合),則下列結(jié)論正確的是__________

①存在點,使得平面平面;

②存在點,使得平面平面;

③若分別是在平面與平面的正投影的面積,則存在點,使得;

的面積可能等于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1995年聯(lián)合國教科文組織把每年423日確定為“世界讀書日”,為提升學(xué)生的文化素養(yǎng),養(yǎng)成多讀書、讀好書的文化生活習(xí)慣,某中學(xué)開展圖書源流活動,讓圖書發(fā)揮它的最大價值,該校某班圖書角有文學(xué)名著類圖書5本,學(xué)科輔導(dǎo)書類圖書3本,其它類圖書2本,共10本不同的圖書,該班班委會從圖書角的10本不同的圖書中隨機挑選3本不同的圖書參加學(xué)校的圖書漂流活動。

I)求選出的三本圖書來自于兩個不同類別的概率:

II)設(shè)隨機變量表示選出的3本圖書中,文學(xué)名著類本數(shù)與學(xué)科輔導(dǎo)類本數(shù)差的絕對值,求隨機變量的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長方形ABCD中,,MDC的中點,將沿AM折起,使得平面平面ABCM

1)求證:平面平面BMD;

2)若點E是線段DB上的一動點,問為何值時,二面角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:過點和點.

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)直線與橢圓相交于不同的兩點, ,是否存在實數(shù),使得?若存在,求出實數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,近日我漁船編隊在島周圍海域作業(yè),在島的南偏西20°方向有一個海面觀測站,某時刻觀測站發(fā)現(xiàn)有不明船只向我漁船編隊靠近,現(xiàn)測得與相距31海里的處有一艘海警船巡航,上級指示海警船沿北偏西40°方向,以40海里/小時的速度向島直線航行以保護(hù)我漁船編隊,30分鐘后到達(dá)處,此時觀測站測得間的距離為21海里.

(Ⅰ)求的值;

(Ⅱ)試問海警船再向前航行多少分鐘方可到島

查看答案和解析>>

同步練習(xí)冊答案