已知R為實數(shù)集,集合P={x|x>-2},集合Q={x|-x2+3x+4>0},則P∩(∁RQ)=( 。
A、(-2,-1)∪(4,+∞)
B、(-2,-1]∪[4,+∞)
C、(-1,4)
D、(-2,-1]
考點:交、并、補集的混合運算
專題:集合
分析:根據(jù)集合的基本運算即可得到結(jié)論.
解答: 解:Q={x|-x2+3x+4>0}=(-1,4),
則CRQ=(-∞,-1]∪[4,+∞),
那么P∩(CRQ)=(-2,-1]∪[4,+∞),
故選B
點評:本題主要考查集合的基本運算,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
1
3
x3+
1
2
(a-1)x2-2a(a+1)x 在區(qū)間(-1,1)上不具有單調(diào)性,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合U={x|x>0},集合A={x∈U|1-
1
x
≥0},則集合CUA=(  )
A、x|x≥1}
B、x|x≥1}
C、{x|x≥1}
D、{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知點A(-2,0)和圓O:x2+y2=4,AB是圓O的直經(jīng),從左到右M、O和N依次是AB的四等分點,P(異于A、B)是圓O上的動點,PD⊥AB交AB于D,
PE
ED
,直線PA與BE交于C,|CM|+|CN|為定值.
(1)求λ的值及點C的軌跡曲線E的方程;
(2)一直線L過定點S(4,0)與點C的軌跡相交于Q,R兩點,點Q關(guān)于x軸的對稱點為Q1,連接Q1與R兩點連線交x軸于T點,試問△TRQ的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

4
1+i
等于( 。
A、iB、1+i
C、1-iD、2-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-alnx(a∈R),
(1)當a<0時,若f(x)在[1,e]上的最大值與最小值之和為2+e,求實數(shù)a值;
(2)令h(x)=f(x)-
a-1
x
,討論h(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合A={x|lgx≤0},B={x|2x≤1},全集U=R,則∁U(A∪B)=(  )
A、(-∞,1)
B、(1,+∞)
C、(-∞,1]
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知半球內(nèi)有一個內(nèi)接正方體,求這個半球的體積與正方體的體積之比.[提示:過正方體的對角面作截面].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線C:
x2
a2
-
y2
b2
=1
的右焦點為F,直線l過焦點F,且斜率為k,則直線l與雙曲線C的左右兩支都相交的充要條件是
 

查看答案和解析>>

同步練習冊答案