18.若?m∈R,函數(shù)f(x)=mx2+x-m-a的圖象和x軸恒有公共點(diǎn),則實(shí)數(shù)a的取值范圍為[-1,1].

分析 當(dāng)m=0,f(x)為一次函數(shù),圖象與x軸有交點(diǎn);m>0時(shí),f(x)為開口向上的二次函數(shù),令fmin(x)≤0解出實(shí)數(shù)a的取值范圍;當(dāng)m<0時(shí),f(x)為開口向下的二次函數(shù),令fmax(x)≥0解出實(shí)數(shù)a的取值范圍,最后取交即可.

解答 解:(1)若m=0,f(x)=x-a,圖象與x軸交于(a,0),符合題意.
(2)若m>0,f(x)=mx2+x-m-a圖象開口向上,
fmin(x)=$\frac{4m(-m-a)-1}{4m}$=-m-a-$\frac{1}{4m}$,
∵f(x)圖象和x軸恒有公共點(diǎn),
∴-m-a-$\frac{1}{4m}$≤0,解得a≥-m-$\frac{1}{4m}$,
∵m+$\frac{1}{4m}$≥2$\sqrt{m•\frac{1}{4m}}$=1,
∴-m-$\frac{1}{4m}$≤-1,
∴a≥-1.
(3)若m<0,f(x)=mx2+x-m-a圖象開口向下,
fmax(x)=$\frac{4m(-m-a)-1}{4m}$=-m-a-$\frac{1}{4m}$,
∵f(x)圖象和x軸恒有公共點(diǎn),
∴-m-a-$\frac{1}{4m}$≥0,解得a≤-m-$\frac{1}{4m}$,
∵-m-$\frac{1}{4m}$≥2$\sqrt{-m•\frac{1}{-4m}}$=1,
∴a≤1.
∵?m∈R,函數(shù)f(x)=mx2+x-m-a的圖象和x軸恒有公共點(diǎn),
∴m的取值范圍是R∩[-1,+∞)∩(-∞,1]=[-1,1].
故答案為[-1,1].

點(diǎn)評(píng) 本題考查了二次函數(shù)的最值與二次函數(shù)圖象和x軸交點(diǎn)個(gè)數(shù)的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知復(fù)數(shù)z滿足(2+i)z=1+2i+3i2+4i3(i為虛數(shù)單位),則z的共軛復(fù)數(shù)是(  )
A.$\frac{6}{5}$+$\frac{2}{5}$iB.$\frac{6}{5}$-$\frac{2}{5}$iC.-$\frac{6}{5}$+$\frac{2}{5}$iD.-$\frac{6}{5}$-$\frac{2}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.定義$a⊕b=\left\{\begin{array}{l}a,a≥b\\ b,a<b\end{array}\right.$,已知函數(shù)f(x)=sinx⊕cosx,給出下列四個(gè)結(jié)論:
(1)該函數(shù)的值域?yàn)閇-1,1];
(2)f(x)是周期函數(shù),最小正周期為π;
(3)當(dāng)且僅當(dāng)$2kπ+π<x<2kπ+\frac{3π}{2}(k∈Z)$時(shí),f(x)<0;
(4)當(dāng)且僅當(dāng)$x=2kπ+\frac{π}{2}(k∈Z)$時(shí),該函數(shù)取得最大值.其中正確的結(jié)論是(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在直角坐標(biāo)系中,求點(diǎn)(2x+3-x2,$\frac{2x-3}{2-x}$)在第四象限的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.終邊在第三象限的角的集合可以表示為{α|180°+k•360°<α<270°+k•360°,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求函數(shù)y=$\frac{{x}^{2}+7x+10}{x+1}$(x>-1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=sin(ωx+φ),(ω>0,0<φ<π)為偶函數(shù),且A(x1,1),B(x2,-1),|x1-x2|的最小值是$\frac{π}{2}$.
(I)求f(x);
(Ⅱ)用五點(diǎn)法畫f(x)一個(gè)周期內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)P為雙曲線$\frac{{x}^{2}}{4}$-y2=1上一動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),M為線段OP的中點(diǎn),則點(diǎn)M的軌跡方程是( 。
A.x2-4y2=1B.4y2-x2=1C.x2-$\frac{y{\;}^{2}}{4}$=1D.$\frac{x{\;}^{2}}{2}$-y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列關(guān)于命題正確的個(gè)數(shù)為(  )
①命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;
②“a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件;
③若p∨q為真命題,則p∧q為真命題.
④命題“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”
⑤當(dāng)x>0時(shí),恒有x>sinx.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案