10.執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A.4B.8C.14D.18

分析 根據(jù)程序框圖進(jìn)行模擬計(jì)算即可.

解答 解:第一次,k=2,S=20-2=18,不滿足條件k>5,
第二次,k=4,S=18-4=16,不滿足條件k>5,
第三次,k=8,S=16-8=8,滿足條件k>5,
輸出S=8,
故選:B

點(diǎn)評 本題主要考查程序框圖的識別和應(yīng)用,根據(jù)條件進(jìn)行模擬計(jì)算是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{4}x+x-2(x>0)}\\{x-(\frac{1}{4})^{x}+2(x≤0)}\end{array}\right.$,若f(x)的兩個(gè)零點(diǎn)分別為x1、x2,則|x1-x2|=( 。
A.$\sqrt{2}$B.1+$\frac{\sqrt{2}}{2}$C.2D.$\frac{3}{2}$+ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)=$\left\{\begin{array}{l}{a{x}^{2}+x,x>0}\\{-2x,x≤0}\end{array}\right.$,若不等式f(x-2)≥f(x)對一切x∈R恒成立,則實(shí)數(shù)a的取值范圍為[-$\frac{9}{16},-\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義在(0,+∞)上的函數(shù)f(x)滿足x2f′(x)+1>0,f(2)=$\frac{9}{2}$,則不等式f(lgx)<$\frac{1}{lgx}$+4的解集為( 。
A.(10,100)B.(0,100)C.(100,+∞)D.(1,100)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對?x∈R,f′(x)>f(x)都有成立,若f(1)=e,則不等式f(x)>ex的解是( 。
A.x>ln4B.0<x<ln4C.x>1D.0<x<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若?x∈D,g(x)≤f(x)≤h(x),則稱函數(shù)f(x)為函數(shù)g(x)到函數(shù)h(x)在區(qū)間D上的“隨性函數(shù)”.已知函數(shù)f(x)=kx,g(x)=x2-2x,h(x)=(x+1)(lnx+1),且f(x)是g(x)到h(x)在區(qū)間[1,e]上的“隨性函數(shù)”,則實(shí)數(shù)k的取值范圍是[e-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在等差數(shù)列{an}中,a1=1,前5項(xiàng)之和等于15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,記數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某幾何體的三視圖如圖所示,若該幾何體的體積為$\frac{2π}{3}$,則a的值為( 。
A.1B.2C.2$\sqrt{2}$D.$\root{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ax+xlnx圖象在點(diǎn)(e,f(e))(e為自然對數(shù)的底數(shù))處的切線斜率為3.
(1)求實(shí)數(shù)a的值;
(2)若k∈Z,且f(x)-k(x-1)>0對任意x>1恒成立,求k的最大值.

查看答案和解析>>

同步練習(xí)冊答案