Loading [MathJax]/jax/output/CommonHTML/jax.js
7.若函數(shù)的圖象經(jīng)過點(2,0),則函數(shù)g(x+1)的圖象必過點(1,0).

分析 直接利用函數(shù)圖象的平移,求出平移后的函數(shù)經(jīng)過的點即可.

解答 解:因為定義在R上的函數(shù)y=g(x)的圖象經(jīng)過點(2,0),
所以函數(shù)y=g(x+1)的圖象可以看作函數(shù)y=g(x)的圖象向左平移1單位得到的,
所以函數(shù)y=g(x+1)的圖象必過定點(1,0).
故答案為:(1,0).

點評 本題考查函數(shù)的圖象的平移,左加右減的原則,考查計算能力,基本知識的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2017屆安徽六安一中高三上學期月考二數(shù)學(文)試卷(解析版) 題型:選擇題

若滿足有兩個,則邊長的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=ax3+x2-ax,其中a∈R且a≠0.
(Ⅰ)當a=1時,求函數(shù)f(x)的極值;
(Ⅱ)求函數(shù)g(x)=fxx3alnx的單調區(qū)間;
(Ⅲ)若存在a∈(-∞,-1],使函數(shù)h(x)=f(x)+f′(x),x∈[-1,b](b>-1)在x=-1處取得最小值,試求b的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知m∈R,直線1:mx-(m2+1)y=4m和圓C:x2+y2-8x+4y+16=0相切,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.f(x)與g(x)表示同一函數(shù)的是( �。�
A.f(x)=x21與g(x)=x1x+1B.f(x)=x與g(x)=x3+xx2+1
C.y=x與y=(x2D.f(x)=x2與g(x)=\root{3}{{x}^{3}}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若函數(shù)f(x)=a2(2-a)x是指數(shù)函數(shù),則a等于-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓M:x2a2+y22=1(a>b>0)過點A(312),離心率e=32
(1)求橢圓M的方程;
(2)斜率為36的直線l與橢圓M交于B、C兩點,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知拋物線C的頂點在坐標原點且關于x軸對稱,直線x-y+1=0與C有唯一的公共點.
(1)求拋物線C的方程;
(2)已知直線l與C交于A,B兩點,點M(1,t)在線段AB上,又點P的坐標為(1,2),若△PAM與△PBM的面積之比等于|PA||PB|,問:l的斜率是否為定值?若是則求此定值,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設函數(shù)f(x)=x3+(1+a)x2+ax有兩個不同的極值點x1,x2,且對不等式f(x1)+f(x2)≤0恒成立,則實數(shù)a的取值范圍是12≤a≤2或a≤-1.

查看答案和解析>>

同步練習冊答案