【題目】已知函數(shù)f(x)=x|x﹣a|+2x(a∈R).
(1)若函數(shù)f(x)在R上單調遞增,求實數(shù)a的取值范圍;
(2)若存在實數(shù)a∈[﹣4,4]使得關于x的方程f(x)﹣tf(a)=0恰有三個不相等的實數(shù)根,求實數(shù)t的取值范圍.
【答案】(1)﹣2≤a≤2;(2)(1,).
【解析】
(1)把函數(shù)化為分段函數(shù)的形式,根據(jù)分段函數(shù)的單調性可得,解不等式組即可.
(2)由(1)當﹣2≤a≤2時,f(x)在R上是增函數(shù),則關于x的方程f(x)﹣tf(a)=0不可能有三個不等的實數(shù)根;
當a∈(2,4]時,討論的單調性,當方程f(x)=tf(a)=2ta有三個不相等的實根,則2ta∈(2a,),令g(a),使即可,同理再求當a∈[﹣4,﹣2)時即可.
(1)f(x)=x|x﹣a|+2x,
由f(x)在R上是增函數(shù),則,即﹣2≤a≤2,則a范圍為﹣2≤a≤2;
(2)當﹣2≤a≤2時,f(x)在R上是增函數(shù),則關于x的方程f(x)﹣tf(a)=0不可能有三個不等的實數(shù)根;
則當a∈(2,4]時,由f(x),
得x≥a時,f(x)=x2+(2﹣a)x對稱軸x,
則f(x)在x∈[a,+∞)為增函數(shù),此時f(x)的值域為[f(a),+∞)=[2a,+∞),
x<a時,f(x)=﹣x2+(2+a)x對稱軸x,
則f(x)在x∈(﹣∞,]為增函數(shù),此時f(x)的值域為(﹣∞,],
f(x)在x∈[,+∞)為減函數(shù),此時f(x)的值域為(2a,];
由存在a∈(2,4],方程f(x)=tf(a)=2ta有三個不相等的實根,則2ta∈(2a,),
即存在a∈(2,4],使得t∈(1,)即可,
令g(a),
只要使t<(g(a))max即可,而g(a)在a∈(2,4]上是增函數(shù),
g(a)max=g(4),
故實數(shù)t的取值范圍為(1,);
當a∈[﹣4,﹣2)時,由 ,
則f(x)在單調遞增,值域為;
在單調遞減,值域為;
在單調遞增,值域為
由存在a∈[﹣4,﹣2),方程f(x)=tf(a)=2ta有三個不相等的實根,
則,即
令,只要使即可,
而在a∈[﹣4,﹣2)單調遞減,
所以t的取值范圍為(1,);
綜上所述,實數(shù)t的取值范圍為(1,).
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù).
(1)求函數(shù)的解析式;
(2)求不等式的解集;
(3)若在上有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),當時,.
(1)求在上的解析式;
(2)若,函數(shù),是否存在實數(shù)使得的最小值為,若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義域為D的函數(shù),如果存在區(qū)間,同時滿足:①在內(nèi)是單調函數(shù);②當定義域是時,的值域也是,則稱是該函數(shù)的“優(yōu)美區(qū)間”.
(1)求證:是函數(shù)的一個“優(yōu)美區(qū)間”.
(2)求證:函數(shù)不存在“優(yōu)美區(qū)間”.
(3)已知函數(shù)()有“優(yōu)美區(qū)間”,當a變化時,求出的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司在甲、乙兩地銷售某種品牌車,利潤(單位:萬元)分別為和,其中為銷售量(單位:輛)
(1)當銷售量在什么范圍時,甲地的銷售利潤不低于乙地的銷售利潤;
(2)若該公司在這兩地共銷售輛車,則甲、乙兩地各銷售多少量時?該公司能獲得利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知y=f(x)是定義在R上的偶函數(shù),當x0時,f(x)=.
(1)求當x<0時,f(x)的解析式;
(2)作出函數(shù)f(x)的圖象,并指出其單調區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:
①y=f(x)的表達式可改寫為y=4cos(2x﹣);
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關于點對稱;
④y=f(x)的圖象關于直線x=﹣對稱.
其中正確的命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】候鳥每年都要隨季節(jié)的變化而進行大規(guī)模的遷徙,研究某種鳥類的專家發(fā)現(xiàn),該種鳥類的飛行速度v(單位:m/s)與其耗氧量Q之間的關系為v=a+blog3 (其中a,b是實數(shù)).據(jù)統(tǒng)計,該種鳥類在靜止時其耗氧量為30個單位,而其耗氧量為90個單位時,其飛行速度為1m/s.
(1)求出a,b的值;
(2)若這種鳥類為趕路程,飛行的速度不能低于2m/s,則其耗氧量至少要多少個單位?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,焦點為,準線為,線段的中點為.點是上在軸上方的一點,且點到的距離等于它到原點的距離.
(1)求點的坐標;
(2)過點作一條斜率為正數(shù)的直線與拋物線從左向右依次交于兩點,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com