【已知命題p1:存在x0∈R,使得x02+x0+1<0成立;p2:對任意x∈[1,2],x2-1≥0.以下命題:
①(p1)∧(p2);②p1∨(p2);③(p1)∧p2;④p1∧p2.
其中為真命題的是________(填序號).
∵方程x02+x0+1=0的判別式
Δ=12-4=-3<0,
∴x2+x+1<0無解,故命題p1為假命題,p1為真命題;
由x2-1≥0,得x≥1或x≤-1.
∴對任意x∈[1,2],x2-1≥0,故命題p2為真命題,p2為假命題.
p1為真命題,p2為真命題,
∴(p1)∧p2為真命題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知命題,命題.若命題“”是真命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)在區(qū)間(-∞,+∞)上是增函數(shù),a,b∈R.
(1)求證:若a+b≥0,則f(a)+f(b)≥f(-a)+f(-b);
(2)判斷(1)中命題的逆命題是否正確,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知命題p:“x∈[1,2],x2-a≥0”,命題q:“x∈R使x2+2ax+2-a=0”,若命題“p且q”是真命題,則實數(shù)a的取值范圍是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知c>0,設命題p:函數(shù)y=cx為減函數(shù).命題q:當x∈時,函數(shù)f(x)=x+>恒成立.如果p或q為真命題,p且q為假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知α:x≥a,β:|x-1|<1.若α是β的必要不充分條件,則實數(shù)a的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

命題“若”的逆命題是         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

有下列四個命題:
①“若xy=1,則x、y互為倒數(shù)”的逆命題;
②“面積相等的三角形全等”的否命題;
③“若有實根則”;
④“若”的逆否命題.
其中真命題個數(shù)為          
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設命題函數(shù)的定義域為R,命題不等式對一切正實數(shù)x均成立,如果命題為真,為假,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案