13.F1、F2是雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的兩個(gè)焦點(diǎn),P在雙曲線上且滿足|PF1|•|PF2|=$\frac{64}{3}$,則∠F1PF2=120°.

分析 根據(jù)雙曲線的標(biāo)準(zhǔn)方程求出焦點(diǎn)坐標(biāo),結(jié)合余弦定理進(jìn)行求解即可.

解答 解:由雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1知a=3,b=4,c=5,
則F1(-5,0),F(xiàn)2(5,0),則|F1F2|=10;
點(diǎn)P在雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上,不妨設(shè)點(diǎn)P在右支上,
則|PF1|-|PF2|=6,
平方得(|PF1|-|PF2|)2=36,
即|PF1|2-2|PF1||PF2|+|PF2|2=36;
因?yàn)閨PF1|•|PF2|=$\frac{64}{3}$,
所以|PF1|2+|PF2|2=$\frac{236}{3}$,
又由余弦定理得cos∠F1PF2=$\frac{|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}-|{F}_{1}{F}_{2}{|}^{2}}{2|P{F}_{1}|•|P{F}_{2}|}$=$\frac{\frac{236}{3}-100}{2×\frac{64}{3}}$=-$\frac{1}{2}$,
所以∠F1PF2=120°.
故答案為:120°.

點(diǎn)評 本題主要考查雙曲線的性質(zhì)的應(yīng)用,根據(jù)雙曲線的定義結(jié)合余弦定理是解決本題的關(guān)鍵.考查學(xué)生的運(yùn)算和轉(zhuǎn)化能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.閱讀如圖程序框圖,運(yùn)行相應(yīng)的程序,則程序運(yùn)行后輸出的結(jié)果為( 。
A.2015B.1008C.2016D.1007

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)是定義在R上的偶函數(shù),且周期為2,當(dāng)0≤x≤1時(shí),f(x)=x2,若直線y=x+a與曲線y=f(x)恰有兩個(gè)公共點(diǎn),則實(shí)數(shù)a的值為(  )
A.n(n∈Z)B.2n(n∈Z)C.2n或2n-$\frac{1}{4}$(n∈Z)D.n或n-$\frac{1}{4}$(n∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知公差d>0的等差數(shù)列{an}中,a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(1)求公差d及通項(xiàng)an;
(2)設(shè)Sn=$\frac{1}{{{a_1}{a_2}}}$+$\frac{1}{{{a_2}{a_3}}}$+…+$\frac{1}{{{a_n}{a_{n+1}}}}$,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖:A是單位圓與x軸正半軸的交點(diǎn),點(diǎn)B在單位圓上且B(-$\frac{3}{5}$,$\frac{4}{5}$),P是劣弧$\widehat{AB}$上一點(diǎn)(不包括端點(diǎn)A、B),∠AOP=θ,∠BOP=α,$\overrightarrow{OQ}$=$\overrightarrow{OA}$+$\overrightarrow{OP}$,四邊形OAQP的面積為S.
(1)當(dāng)θ=$\frac{π}{6}$時(shí),求cosα;
(2)求$\overrightarrow{OA}$•$\overrightarrow{OQ}$+S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知三個(gè)正數(shù)a,b,c為等比數(shù)列,則$\frac{a+c}$+$\frac{a+c}$的最小值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.滿足條件{1,2}∪A={1,2}的所有非空集合A的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知點(diǎn)P(x,y)為橢圓$\frac{{x}^{2}}{4}$+y2=1上任意一點(diǎn),點(diǎn)Q(0,3),則|PQ|的最大值 4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)f(x)=ax2+(a-2)x-2(a∈R).
(I)解關(guān)于x的不等式f(x)≥0;
(II)若a>0,當(dāng)-1≤x≤1時(shí),f(x)≤0時(shí)恒成立,求a的取值范圍.
(III)若當(dāng)-1<a<1時(shí),f(x)>0時(shí)恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案