分析 (Ⅰ)取SD的中點Q,連接QF、QE,證明BFQE為平行四邊形,可得BE∥QF,即可證明:BE∥平面SDF;
(Ⅱ)若AB=5,利用等體積方法求點E到平面SDF的距離.
解答 證明:(Ⅰ)取SD的中點Q,連接QF、QE,
由于點E為側(cè)棱AS的中點,Q為SD的中點
故在△DAS中,QE$\underline{\underline{∥}}\frac{1}{2}AD$,
由于F是BC的中點
故BF$\underline{\underline{∥}}\frac{1}{2}AD$,
故QE$\underline{\underline{∥}}BF$
故BFQE為平行四邊形
故BE∥QF,又QF?平面EFD1,BE?平面EFD1
故BE∥平面SDF;
解:(Ⅱ)由DS⊥面ABCD,
又AB?面ABCE,故DS⊥AB
又AB⊥AD,故AB⊥面ADS,又BC∥面ADS
故F到面ADS的距離為AB的長,即為5.
設(shè)點E到平面SDF的距離為h.
又VF-SED=VE-SDF故$\frac{5}{3}•{\frac{5}{4}^2}=\frac{1}{3}h•{\frac{{\sqrt{5}×5}}{4}^2}$
$h=\sqrt{5}$
點評 本題考查線面平行的判定,考查等體積方法求點到平面的距離,考查學(xué)生的計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com