分析 由拋物線C:y2=4x可得焦點(diǎn)F(1,0).設(shè)A(x1,y1),B(x2,y2),直線PF的方程為:y=k(x-1).與拋物線方程聯(lián)立可得:k2x2-(2k2+4)x+k2=0,利用根與系數(shù)的關(guān)系和弦長(zhǎng)公式,求出點(diǎn)D(-1,0)到直線AB的距離d.再利用S△DAB=$\frac{1}{2}$d•|AB|,即可得出所求范圍.
解答 解:由拋物線C:y2=4x可得焦點(diǎn)F(1,0).
設(shè)A(x1,y1),B(x2,y2),直線PF的方程為:y=k(x-1).
聯(lián)立$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,
化為k2x2-(2k2+4)x+k2=0,
則x1+x2=2+$\frac{4}{{k}^{2}}$,x1x2=1.
∴|AB|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$•$\sqrt{(2+\frac{4}{{k}^{2}})^{2}-4}$=$\frac{4(1+{k}^{2})}{{k}^{2}}$.
點(diǎn)D(-1,0)到直線AB的距離d=$\frac{|2k|}{\sqrt{1+{k}^{2}}}$.
∴S△DAB=$\frac{1}{2}$d•|AB|=$\frac{1}{2}$$\frac{|2k|}{\sqrt{1+{k}^{2}}}$•$\frac{4(1+{k}^{2})}{{k}^{2}}$
=4$\sqrt{\frac{1}{{k}^{2}}+1}$>4.
∴△DAB的面積S的取值范圍為(4,+∞).
故答案為:(4,+∞).
點(diǎn)評(píng) 本題考查了直線與拋物線相交問(wèn)題轉(zhuǎn)化為方程聯(lián)立,同時(shí)考查根與系數(shù)的關(guān)系、弦長(zhǎng)公式、點(diǎn)到直線的距離公式、三角形的面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com