在△ABC中,AB=3,A=60°,AC=4,則邊AC上的高是( 。
A、
3
2
2
B、
3
2
3
C、
3
2
D、3
3
考點:解三角形
專題:解三角形
分析:根據(jù)三角形的面積公式先求出面積,然后再求出AC邊上的高.
解答: 解析∵A=60°,∴sin A=
3
2

∴S△ABC=
1
2
AB•AC•sin A=
1
2
×3×4×
3
2
=3
3

設邊AC上的高為h,
則S△ABC=
1
2
AC•h=
1
2
×4×h=3
3
,∴h=
3
2
3

答案 B
點評:本題主要考查三角形的面積公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=3x-2,x∈[-1,1]的值域是( 。
A、[1,
5
3
]
B、[-1,1]
C、[-
5
3
,1]
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

空中有一氣球,在它的正西方A點測得它的仰角為45°,同時在它南偏東60°的B點,測得它的仰角為30°,若A、B兩點間的距離為266米,這兩個觀測點均離地1米,那么測量時氣球到地面的距離是( 。
A、
266
7
7
B、(
266
7
7
+1)米
C、266米
D、266
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在集合{1,2,3,4,5,6}中任取一個偶數(shù)a和一個奇數(shù)b構成以原點為起點的向量
a
=(a,b),從所有得到的以原點為起點的向量中任取兩個向量為鄰邊作平行四邊形,記所有作成的平行四邊形的個數(shù)為t,在區(qū)間[1,
t
5
]和[2,4]分別各取一個數(shù),記為m和n,則方程
x 2
m 2
+
y 2
n 2
=1表示焦點在x軸上的橢圓的概率是( 。
A、
1
3
B、
1
2
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個命題:
①命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;
②“x>2”是“x2-3x+2>0”的充分不必要條件;
③若p∧q為假命題,則p,q均為假命題;
④對于命題p:?x∈R,使得x2+x+1<0,則?p為:?x∈R,均有x2+x+1≥0.
其中,錯誤的命題的個數(shù)是( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

兩個二進制數(shù)101(2)與110(2)的和用十進制數(shù)表示為( 。
A、12B、11C、10D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

適合log5xlogx7=log57的x的集合是( 。
A、{5,7}
B、{0,1以外的實數(shù)}
C、{不為1的正數(shù)}
D、R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

每年春季在鄭州舉行的“中國鄭開國際馬拉松賽”活動,已成為最有影響力的全民健身活動之一,每年的參與人數(shù)不斷增多,然后也有部分人對該活動的實際效果提出了疑問,對此,某新聞媒體進行了網(wǎng)上調查,在所有參與調查的人中,持“支持”、“保留意見”和“不支持”態(tài)度的人數(shù)如下表所示:
支持保留意見不支持
800450200
100150300
(Ⅰ)在所有參與調查的人中,用分層抽樣的方法抽取n個人,已知從持“支持”態(tài)度的人中抽取了45人,求n的值;
(Ⅱ)接受調查的人同時要對這項活動進行打分,其中6人打出的分數(shù)如下:9.2,9.6,8.7,9.3,9.0,8.2.把這6個人打出的分數(shù)看作一個總體,從中任取2個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過0.6的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的莖葉圖記錄了甲、乙兩組各四名同學的植樹的棵數(shù);乙組有一個數(shù)據(jù)模糊,用X表示.
(Ⅰ)若x=8,求乙組同學植樹的棵數(shù)的平均數(shù);
(Ⅱ)若x=9,分別從甲、乙兩組中各隨機錄取一名學生,求這兩名學生植樹總棵數(shù)為19的概率;
(Ⅲ)甲組中有兩名同學約定一同去植樹,且在車站彼此等候10分鐘,超過10分鐘,則各自到植樹地點再會面.一個同學在7點到8點之間到達車站,另一個同學在7點半與8點之間到達車站,求他們在車站會面的概率.

查看答案和解析>>

同步練習冊答案