【題目】已知圓 ,直線過定點.

(Ⅰ)若與圓相切,求的方程;

(Ⅱ)若與圓相交于兩點,求的面積的最大值,并求此時直線的方程.(其中點是圓的圓心)

【答案】(Ⅰ)x=1或3x-4y=3;(Ⅱ) 最大為2.

【解析】試題分析:

分類討論:

直線無斜率時,直線的方程為,此時直線和圓相切,

直線有斜率時,結(jié)合圓心到直線的距離等于半徑得到關(guān)于k的方程,解方程可得,則直線方程為,

綜上可得直線方程為x=13x-4y=3.

結(jié)合三角形面積公式可知,當(dāng),面積有最大值,

由幾何關(guān)系可知圓心到直線的距離為,利用點到直線距離公式可知直線的斜率1,則直線方程為: .

試題解析:

Ⅰ)直線無斜率時,直線的方程為,此時直線和圓相切,

直線有斜率時,設(shè)方程為,利用圓心到直線的距離等于半徑得: ,直線方程為,

故所求直線方程為x=13x-4y=3.

面積最大時, , ,

是等腰直角三角形,由半徑得:圓心到直線的距離為,

設(shè)直線的方程為: 1,

直線方程為: .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中, 底面 , , 是棱上一點.

I)求證:

II)若, 分別是 的中點,求證: 平面

III)若二面角的大小為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形與梯形全等, , , , 中點.

(Ⅰ)證明: 平面

(Ⅱ)點在線段上(端點除外),且與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,橢圓的上焦點為,橢圓的離心率為,且過點.

(1)求橢圓的方程.

(2)設(shè)過橢圓的上頂點的直線與橢圓交于點不在軸上),垂直于的直線與交于點,與軸交于點,若,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(x)=xlnx,g(x)=ax3-.

()求函數(shù)(x)的單調(diào)遞增區(qū)間和最小值;

()若函數(shù)y= (x)與函數(shù)y =g(x)的圖象在交點處存在公共切線,求實數(shù)a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 是拋物線上兩點,且兩點橫坐標(biāo)之和為3.

(1)求直線的斜率;

(2)若直線,直線與拋物線相切于點,且,求方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)、為常數(shù)).若函數(shù)的圖象在處相切,

Ⅰ)求的解析式;

Ⅱ)設(shè)函數(shù) ,若上的最小值為,求實數(shù)的值;

Ⅲ)設(shè)函數(shù),若上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】P2P平臺需要了解該平臺投資者的大致年齡分布,發(fā)現(xiàn)其投資者年齡大多集中在區(qū)間[20,50]歲之間,對區(qū)間[20,50]歲的人群隨機抽取20人進(jìn)行了一次理財習(xí)慣調(diào)查,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

人數(shù)(單位:人)

第一組

[20,25)

2

第二組

[25,30)

a

第三組

[30,35)

5

第四組

[35,40)

4

第五組

[40,45)

3

第六組

[45,50]

2

 

()a的值并畫出頻率分布直方圖;

()在統(tǒng)計表的第五與第六組的5人中,隨機選取2人,求這2人的年齡都小于45歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某海輪以每小時30海里的速度航行,在點測得海面上油井在南偏東,海輪向北航行40分鐘后到達(dá)點,測得油井在南偏東,海輪改為北偏東的航向再行駛80分鐘到達(dá)點,則兩點的距離為(單位:海里)

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案