3.設(shè)A(-5,0),B(5,0),M為平面上的動(dòng)點(diǎn),若當(dāng)|MA|-|MB|=10時(shí),M的軌跡為( 。
A.雙曲線的一支B.一條線段C.一條射線D.兩條射線

分析 根據(jù)題意,由A、B的坐標(biāo)可得|AB|=10,結(jié)合題意可得|MA|-|MB|=|AB|,由雙曲線的定義分析可得M的軌跡為一條射線,即可得答案.

解答 解:根據(jù)題意,A(-5,0),B(5,0),則|AB|=10,
動(dòng)點(diǎn)M滿足|MA|-|MB|=10,
即|MA|-|MB|=|AB|,
則M的軌跡為一條射線,頂點(diǎn)為B點(diǎn),B點(diǎn)右側(cè)x軸上的部分;
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的定義,涉及軌跡的求法,需要注意|MA|-|MB|的值與AB間距離的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在區(qū)間[0,1]中隨機(jī)取出兩個(gè)數(shù),則兩數(shù)之和不小于$\frac{4}{5}$的概率是(  )
A.$\frac{8}{25}$B.$\frac{9}{25}$C.$\frac{18}{25}$D.$\frac{17}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知復(fù)數(shù)z=lgm+(lgn)i,其中i是虛數(shù)單位.若復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在直線y=-x上,則mn的值等于(  )
A.0B.1C.10D.$\frac{1}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2=1,a3=2,則S4=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)f(x)=x(x-c)2在x=2處有極大值,且對(duì)于任意x∈[5,8],f(x)-m≤0恒成立,則實(shí)數(shù)m的取值范圍為[32,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知線段AB的端點(diǎn)B的坐標(biāo)是(8,6),端點(diǎn)A在圓(x+1)2+y2=4上運(yùn)動(dòng),則線段AB的中點(diǎn)P的軌跡方程為(x-$\frac{7}{2}$)2+(y-3)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.點(diǎn)M的直角坐標(biāo)是(1,-$\sqrt{3}$),則點(diǎn)M的極坐標(biāo)為( 。
A.(2,$\frac{π}{3}$)B.(2,-$\frac{π}{3}$)C.(2,$\frac{2π}{3}$)D.(2,2kπ+$\frac{π}{3}$)(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=ex-1-x-ax2
(Ⅰ)當(dāng)a=0時(shí),求證:f(x)≥0;
(Ⅱ)當(dāng)x≥0時(shí),若不等式f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)若x>0,證明(ex-1)ln(x+1)>x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知cosα≤sinα,則角α的終邊落在第一象限內(nèi)的范圍是( 。
A.(0,$\frac{π}{4}$]B.[$\frac{π}{4}$,$\frac{π}{2}$)
C.[2kπ+$\frac{π}{4}$,2kπ+$\frac{π}{2}$),k∈ZD.(2kπ,2kπ+$\frac{π}{4}$],k∈Z

查看答案和解析>>

同步練習(xí)冊(cè)答案