13.如圖,已知扇形AOB的圓心角為120°,半徑長(zhǎng)為6,求弓形ACB的面積.

分析 由已知利用弧長(zhǎng)公式可求弧長(zhǎng),進(jìn)而可求S扇形OAB,解三角形可求S△OAB,作差即可得解弓形ACB的面積.

解答 解:因?yàn)椋?20°=$\frac{120}{180}$π=$\frac{2}{3}$π,
所以:l=6×$\frac{2}{3}$π=4π,
所以:$\widehat{AB}$的長(zhǎng)為4π.
因?yàn)椋篠扇形OAB=$\frac{1}{2}$lr=$\frac{1}{2}$×4π×6=12π,如圖所示,
有S△OAB=$\frac{1}{2}$×AB×OD(D為AB中點(diǎn))
=$\frac{1}{2}$×2×6cos$\frac{π}{6}$×3=9$\sqrt{3}$.
所以:S弓形ACB=S扇形OAB-S△OAB=12π-9$\sqrt{3}$.
所以:弓形ACB的面積為12π-9$\sqrt{3}$.

點(diǎn)評(píng) 本題主要考查了弧長(zhǎng)公式,扇形面積公式,三角形面積公式的綜合應(yīng)用,考查了數(shù)形結(jié)合扇形,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}12x-x{\;}^{3},x≤0\\-2x,x>0\end{array}$,當(dāng)x∈(-∞,m]時(shí),f(x)的取值范圍為[-16,+∞),則實(shí)數(shù)m的取值范圍是[-2,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.將函數(shù)f(x)=$\sqrt{3}$cos2x+sin2x的圖象向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,且滿足|g(x)|≤a恒成立,則a的最小值為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.命題“原函數(shù)與反函數(shù)的圖象關(guān)于y=x對(duì)稱”的否定是( 。
A.原函數(shù)與反函數(shù)的圖象關(guān)于y=-x對(duì)稱
B.原函數(shù)不與反函數(shù)的圖象關(guān)于y=x對(duì)稱
C.存在一個(gè)原函數(shù)與反函數(shù)的圖象不關(guān)于y=x對(duì)稱
D.存在原函數(shù)與反函數(shù)的圖象關(guān)于y=x對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)直線系A(chǔ):(x-1)cos θ+(y-1)sin θ=1(0≤θ<2π),對(duì)于下列五個(gè)命題:
①存在定點(diǎn)P不在A中的任一直線上;
②A中所有直線均經(jīng)過(guò)一個(gè)定點(diǎn);
③對(duì)于任意的正整數(shù)n(n≥3),存在正n邊形,其所有邊均在A中的直線上;
④A中的直線所能圍成的正三角形的面積都相等;
⑤A中的直線所能圍成的正方形的面積都相等.
其中所有真命題的序號(hào)是(  )
A.①②④B.②③⑤C.①③⑤D.②④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a2=6,S5=40.求數(shù)列{an}的通項(xiàng)公式和前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知向量$\overrightarrow a,\overrightarrow b$的夾角為$\frac{5π}{6}$,且$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=\sqrt{3}$,$\overrightarrow c=2\overrightarrow a+3\overrightarrow b$,則$|{\overrightarrow c}|$=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知在${(\frac{a}{x}-\sqrt{x})^6}(a>0)$的展開(kāi)式中,常數(shù)項(xiàng)為60.
(1)求a;
(2)求含${x^{\frac{3}{2}}}$的項(xiàng)的系數(shù);
(3)求展開(kāi)式中所有的有理項(xiàng).
(4)求展開(kāi)式中系數(shù)最大的項(xiàng)和二項(xiàng)式系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若$tan(θ-\frac{π}{4})=\frac{1}{3}$,則tanθ=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案