1.函數(shù)f(x)=x-1-2sinπx的所有零點之和等于5.

分析 由f(x)=x-1-2sinπx=0得x-1=2sinπx,分別作出函數(shù)y=x-1和y=2sinπx的圖象,利用對稱性結(jié)合數(shù)形結(jié)合進行求解即可.

解答 解:由f(x)=x-1-2sinπx=0得x-1=2sinπx,
分別作出函數(shù)y=x-1和y=2sinπx的圖象如圖:
則兩個函數(shù)都關(guān)于點(1,0)對稱,
由圖象知,兩個函數(shù)共有5個交點,其中x=1是一個零點,
另外4個零點關(guān)于點(1,0)對稱,
設(shè)對稱的兩個點的橫坐標(biāo)分別為x1,x2,
則x1+x2=2×1=2,
∴5個交點的橫坐標(biāo)之和為2+2+1=5.
故答案為:5.

點評 本題主要考查函數(shù)交點個數(shù)以及數(shù)值的計算,根據(jù)函數(shù)圖象的性質(zhì),利用數(shù)形結(jié)合是解決此類問題的關(guān)鍵,綜合性較強.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在直角坐標(biāo)系xoy中,曲線C1,C2的參數(shù)方程分別為$\left\{\begin{array}{l}x=\sqrt{5}cosθ\\ y=\sqrt{5}sinθ\end{array}\right.$(θ為參數(shù))和$\left\{\begin{array}{l}x=\sqrt{5}-\frac{{\sqrt{2}}}{2}t\\ y=-\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù))則曲線C1,C2的交點的極坐標(biāo)(5,$\frac{3π}{2}$)或(5,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}中a1=1,關(guān)于x的方程x2-an+1•tan(cosx)+(2an+1)•tan1=0有唯一解,設(shè)bn=nan,數(shù)列{bn}的前n項和為Sn,則S9=( 。
A.8143B.8152C.8146D.8149

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ex-ax一1(a∈R).
(I)討論函數(shù)y=f(x)的單調(diào)性并求其單調(diào)區(qū)間;
(Ⅱ)若函數(shù)F(x)=f(x)-x1nx在定義域內(nèi)存在零點,試求實數(shù)a的取值范圍;
(Ⅲ)若g(x)=1n(ex-1)-lnx,且f[g(x)]<f(x)在x∈(0,+∞)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)h(x)=x2-mx,g(x)=lnx.
(Ⅰ)設(shè)f(t)=m${∫}_{\frac{π}{2}}^{t}$(sinx+cosx)dx且f(2016π)=2,若函數(shù)h(x)與g(x)在x=x0處的切線平行,求這兩切線間的距離;
(Ⅱ)任意x>0,不等式h(x)≥g(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)(|φ|<$\frac{π}{2}$)的圖象可以由g(x)=2$\sqrt{2}$sinxcosx的圖象向x軸負(fù)方向平移$\frac{π}{4}$個單位得到,則φ的值為( 。
A.-$\frac{π}{8}$B.0C.$\frac{π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知點A(4,3),P是雙曲線x2-y2=2右支上一點,F(xiàn)為雙曲線的右焦點,則|PA|+|PF|的最小值是( 。
A.$2\sqrt{5}-3$B.$3\sqrt{5}-2\sqrt{2}$C.$3\sqrt{2}+2$D.$2\sqrt{5}+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.股票每天的漲、跌幅均不超過10%,即當(dāng)漲了原價的10%后,便不能再漲,叫做漲停;當(dāng)?shù)嗽瓋r的10%后,便不能再跌,叫做跌停.已知一支股票某天漲停,之后兩天時間又跌回到原價,若這兩天此股票股價的平均每天下跌的百分率為x,則x滿足的方程是( 。
A.1-2x=$\frac{9}{10}$B.1-2x=$\frac{10}{11}$C.(1-x)2=$\frac{9}{10}$D.(1-x)2=$\frac{10}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(mx+1)(1nx-3).
(1)若m=1,求曲線y=f(x)在x=1處的切線方程;
(2)若函數(shù)f(x)在(0,+∞)上是增函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案