13.已知點(diǎn)A(4,3),P是雙曲線x2-y2=2右支上一點(diǎn),F(xiàn)為雙曲線的右焦點(diǎn),則|PA|+|PF|的最小值是( 。
A.$2\sqrt{5}-3$B.$3\sqrt{5}-2\sqrt{2}$C.$3\sqrt{2}+2$D.$2\sqrt{5}+\sqrt{2}$

分析 由題意得 右焦點(diǎn)F(2,0),左焦點(diǎn)為 F′(-2,0),由雙曲線的定義可得|PF′|-|PF|=2a=2$\sqrt{2}$,故|PF|+|PA|=|PF′|-2$\sqrt{2}$+|PA|≥|AF′|-2$\sqrt{2}$,運(yùn)算求得結(jié)果.

解答 解:由題意得右焦點(diǎn)F(2,0),左焦點(diǎn)為 F′(-2,0),
由雙曲線的定義可得|PF′|-|PF|=2a=2$\sqrt{2}$,
|PF|+|PA|=|PF′|-2$\sqrt{2}$+|PA|≥|AF′|-2$\sqrt{2}$=$\sqrt{(4+2)^{2}+{3}^{2}}$-2$\sqrt{2}$=3$\sqrt{5}$-2$\sqrt{2}$,
故選:B

點(diǎn)評(píng) 本題考查雙曲線的定義和標(biāo)準(zhǔn)方程,以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,得到|PF|+|PA|=|PF′|-2$\sqrt{2}$+|PA|≥|AF′|-2$\sqrt{2}$,是解題的關(guān)鍵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=|x+m|.
(1)若不等式f(1)+f(-2)≥5成立,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x≠0時(shí),證明:f($\frac{1}{x}$)+f(-x)≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.圓C的極坐標(biāo)方程為$ρ=2\sqrt{2}cos(θ+\frac{3}{4}π)$,極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的非負(fù)半軸重合,且長(zhǎng)度單位相同,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)).
(1)求C的直角坐標(biāo)方程及圓心的極坐標(biāo)
(2)l與C交于A,B兩點(diǎn),求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=x-1-2sinπx的所有零點(diǎn)之和等于5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知{an}是各項(xiàng)項(xiàng)都為正數(shù)的數(shù)列,其前n項(xiàng)和為Sn,且滿足2anSn-an2=1
(Ⅰ)證明{Sn2}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{Sn2xn-1}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.下列說法正確的是③④⑤.(只填正確說法序號(hào))
①若集合A={y|y=x-1},B={y|y=x2-1},則A∩B={(0,-1),(1,0)};
②y=$\sqrt{x-3}$+$\sqrt{2-x}$是函數(shù)解析式;
③y=$\frac{\sqrt{1{-x}^{2}}}{1-|3-x|}$是非奇非偶函數(shù);
④若函數(shù)f(x)在(-∞,0],[0,+∞)都是單調(diào)增函數(shù),則f(x)在(-∞,+∞)上也是增函數(shù);
⑤冪函數(shù)y=xα的圖象不經(jīng)過第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.關(guān)于x的不等式2x≤2x+1-$\frac{1}{2}$解集是{x|x≥-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=x2+$\frac{1}{x}$,f′(x)為f(x)的導(dǎo)函數(shù),則f′(1)的值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知?jiǎng)狱c(diǎn)P在圓x2+y2=4上運(yùn)動(dòng),過點(diǎn)P作x軸的垂線段,垂足為D,求線段PD的中點(diǎn)M的軌跡.

查看答案和解析>>

同步練習(xí)冊(cè)答案