6.設(shè)f(x)=kax-a-x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求k的值;
(2)若f(1)>0,求不等式f(x2+2x)+f(x-4)>0的解集;
(3)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-4f(x),求g(x)在區(qū)間[1,+∞)上的最小值.

分析 (1)根據(jù)f(x)是定義域?yàn)镽的奇函數(shù),可得k=1,
(2)f(x)=ax-a-x(a>0,且a≠1),利用f(1)>0,可得a>1,從而可證f(x)在R上單調(diào)遞增,故原不等式化為x2+2x>4-x,從而可求不等式的解集;
(3)根據(jù)f(1)=$\frac{3}{2}$,確定a=2的值,從而可得函數(shù)g(x)=22x+2-2x-4(2x-2-x)=(2x-2-x2-4(2x-2-x)+2.令t=f(x)=2x-2-x,由(1)可知f(x)=2x-2-x為增函數(shù),可得t≥f(1)=$\frac{3}{2}$,令h(t)=t2-4t+2=(t-2)2-2(t≥$\frac{3}{2}$),運(yùn)用二次函數(shù)的最值的求法,即可得到最小值.

解答 解:(1)∵f(x)是定義域?yàn)镽的奇函數(shù),
∴f(0)=0,可k-1=0,即k=1,
(2)f(x)=ax-a-x(a>0,且a≠1)
∵f(1)>0,∴a-$\frac{1}{a}$>0,又a>0且a≠1,∴a>1.
f′(x)=axlna+$\frac{lna}{{a}^{x}}$,
∵a>1,∴l(xiāng)na>0,而ax+$\frac{1}{{a}^{x}}$>0,
∴f′(x)>0,∴f(x)在R上單調(diào)遞增,
原不等式化為:f(x2+2x)>f(4-x),
∴x2+2x>4-x,即x2+3x-4>0,
∴x>1或x<-4,
∴不等式的解集為{x|x>1或x<-4}.
(3)∵f(1)=$\frac{3}{2}$,∴a-$\frac{1}{a}$=$\frac{3}{2}$,即2a2-3a-2=0,
∴a=2或a=-$\frac{1}{2}$(舍去).
∴g(x)=22x+2-2x-4(2x-2-x)=(2x-2-x2-4(2x-2-x)+2.
令t=f(x)=2x-2-x,由(1)可知f(x)=2x-2-x為增函數(shù),
∵x≥1,∴t≥f(1)=$\frac{3}{2}$,
令h(t)=t2-4t+2=(t-2)2-2(t≥$\frac{3}{2}$),
當(dāng)t=2>$\frac{3}{2}$,即x=log2(1+$\sqrt{2}$)時(shí),h(t)取得最小值-2,
即有g(shù)(x)在區(qū)間[1,+∞)上的最小值為-2.

點(diǎn)評(píng) 本題考查函數(shù)單調(diào)性與奇偶性的綜合,考查解不等式,考查二次函數(shù)最值的研究,解題的關(guān)鍵是確定函數(shù)的單調(diào)性,確定參數(shù)的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$f(x)=\frac{sinx}{1+cosx}+1$,若$a=f(lg5),b=f(lg\frac{1}{5})$,則( 。
A.a+b=0B.a-b=0C.a+b=2D.a-b=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.為了得到$f(x)=2sin({3x-\frac{π}{3}})$的圖象,只需將g(x)=2sinx的圖象(  )
A.縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)為原來的3倍,再將所得圖象向右平移$\frac{π}{9}$個(gè)單位
B.縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)為原來的3倍,再將所得圖象向右平移$\frac{π}{3}$個(gè)單位
C.縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的$\frac{1}{3}$,再將所得圖象向右平移$\frac{π}{3}$個(gè)單位
D.縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的$\frac{1}{3}$,再將所得圖象向右平移$\frac{π}{9}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.表面積為60π的球面上有四點(diǎn)S,A,B,C,且△ABC是等邊三角形,球心O到平面ABC的距離為2,若平面SAB⊥平面ABC,則棱錐S-ABC體積的最大值為$\frac{121\sqrt{3}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.方程2a=|ax-1|(a>0且a≠1)有兩個(gè)不同的解,則a的取值范圍為(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=lgx的定義域?yàn)锳,函數(shù)g(x)=$\sqrt{1-{x}^{2}}$的定義域?yàn)锽,則A∪B等于(  )
A.[-1,+∞)B.[-1,1]C.(0,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一動(dòng)圓P過定點(diǎn)M(-4,0),且與已知圓N:(x-4)2+y2=16相切,則動(dòng)圓圓心P的軌跡方程是(  )
A.$\frac{x^2}{4}-\frac{y^2}{12}=1(x≥2)$B.$\frac{x^2}{4}-\frac{y^2}{12}=1(x≤2)$C.$\frac{x^2}{4}-\frac{y^2}{12}=1$D.$\frac{y^2}{4}-\frac{x^2}{12}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.離心率$e=\frac{2}{3}$,焦距2c=16的橢圓的標(biāo)準(zhǔn)方程為$\frac{x^2}{144}+\frac{y^2}{80}=1$或$\frac{x^2}{80}+\frac{y^2}{144}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.f(x)=loga$\frac{1-mx}{1-x}$為奇函數(shù)(a>1)
(1)求實(shí)數(shù)m的值;
(2)解不等式f(x-$\frac{1}{2}$)+f($\frac{1}{4}$-x)<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案