4.已知f(x)=|2x-1|+x+3,若f(x)≥5,則x的取值范圍是{x|x≥1,或x≤-1}.

分析 由題意可得2-x≤0 ①,或$\left\{\begin{array}{l}{2-x>0}\\{2x-1≥2-x或2x-1≤x-2}\end{array}\right.$ ②,分別求得①、②的解集,再取并集,即得所求.

解答 解:f(x)≥5,即|2x-1|≥2-x,∴2-x≤0 ①,或$\left\{\begin{array}{l}{2-x>0}\\{2x-1≥2-x或2x-1≤x-2}\end{array}\right.$ ②,
解①求得x≥2,解②求得1≤x<2 或x≤-1.
綜上可得,不等式的解集為{x|x≥1,或x≤-1},
故答案為:{x|x≥1,或x≤-1}.

點評 本題主要考查分式不等式的解法,體現(xiàn)了等價轉化和分類討論的數(shù)學思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.${log}_{\frac{1}{3}}$29∈(k,k+1),k∈Z,則k=-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若x≥1,a=($\frac{1}{3}$)${\;}^{{x}^{2}+1}$,b=($\frac{1}{3}$)x+1,c=($\frac{1}{3}$)2x,則下列關系中正確的是( 。
A.lga≥lgb≥1gcB.lgb≥lgc≥lgaC.lgb≥lga≥lgcD.1gc≥1ga≥lgb

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某個公司調查統(tǒng)計它的員工每周參與體育鍛煉的時間,樣本容量為100人,將調查結果統(tǒng)計為頻率分布直方圖,如圖.我們將每周體育鍛煉時間不低于150分鐘的人稱為“勤于鍛煉者”,并將有關性別的信息統(tǒng)計到表中.
 “勤于鍛煉者” 非“勤于鍛煉者” 合計
 男 25  70
 女   
 合計   
(1)根據(jù)圖表信息,判斷“勒于鍛煉者”是否與性別有關?
附:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{n}_{+1}+{n}_{+2}}$
 p(X2≥k) 0.05 0.01
 k 3.841 6.635
(2)在調查中還統(tǒng)計了員工的年齡,發(fā)現(xiàn)公司員工的年齡服從正態(tài)分布N(35,9),那么從公司中隨機選取一名員工,他的年齡在32-38歲之間的概率是多少?(Φ(1)=0.8413)
(3)由于猜測員工的鍛煉時間y與年齡x成線性相關,所以根據(jù)調查結果進行了線性回歸分析,得到回歸方程為y=-5x+b,如果員工的平均鍛煉時間是110分鐘,那么請判斷下列說法的正誤:
①b=285;
②由于回歸方程的斜率是負的,說明年齡越大的員工,每周鍛煉時間一定越短;
③由于回歸直線方程的斜率是負的,說明兩個變量的相關關系是負相關;
④能夠算出回歸方程,說明兩個變旦之間確實是線性相關關系;
⑤回歸直線是所有直線中穿過數(shù)據(jù)點最多的直線;
⑥兩個變量是不是成線性相關關系還要看相關系數(shù)的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若a,b,c>0,且$a(a+b+c)+bc=4+2\sqrt{3}$,則2a+b+c的最小值為(  )
A.$\sqrt{3}-1$B.$2\sqrt{3}+2$C.$\sqrt{3}+1$D.$2\sqrt{3}-2$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)y=|x-2|的單調遞增區(qū)間為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)$f(x)=\frac{4x-6}{x-1}$的定義域和值域都是[2,b](b>2),則實數(shù)b的值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.給出四個命題:
①平行于同一平面的兩個不重合的平面平行;
②平行于同一直線的兩個不重合的平面平行;
③垂直于同一平面的兩個不重合的平面平行;
④垂直于同一直線的兩個不重合的平面平行;
其中真命題的序號是①④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.定義運算?,a?b=S的運算原理如偽代碼所示,則式子5?3+2?4=32.

查看答案和解析>>

同步練習冊答案