【題目】等比數(shù)列中, 分別是下表中第行中的某一個數(shù),且中任何兩個數(shù)不在下表的同一列中.

1)求數(shù)列的通項公式;

2)設,求數(shù)列的前項和.

【答案】1;(2

【解析】試題分析:(1)由表格可看出分別是由此求出的首項和公比,即可求通項公式;(2由(1可知利用錯位相減法可以求出數(shù)列的前項和.

試題解析:(1)由題知,

2

.

【易錯點晴】本題主要等差數(shù)列的通項公式、等比數(shù)列的求和公式以及錯位相減法求數(shù)列的和,屬于難題. “錯位相減法求數(shù)列的和是重點也是難點,利用錯位相減法求數(shù)列的和應注意以下幾點:①掌握運用錯位相減法求數(shù)列的和的條件(一個等差數(shù)列與一個等比數(shù)列的積);②相減時注意最后一項 的符號;③求和時注意項數(shù)別出錯;④最后結(jié)果一定不能忘記等式兩邊同時除以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列類比推理的結(jié)論正確的是(
①類比“實數(shù)的乘法運算滿足結(jié)合律”,得到猜想“向量的數(shù)量積運算滿足結(jié)合律”;
②類比“平面內(nèi),同垂直于一直線的兩直線相互平行”,得到猜想“空間中,同垂直于一直線的兩直線相互平行”;
③類比“設等差數(shù)列{an}的前n項和為Sn , 則S4 , S8﹣S4 , S12﹣S8成等差數(shù)列”,得到猜想“設等比數(shù)列{bn}的前n項積為Tn , 則T4 , , 成等比數(shù)列”;
④類比“設AB為圓的直徑,p為圓上任意一點,直線PA,PB的斜率存在,則kPA . kPB為常數(shù)”,得到猜想“設AB為橢圓的長軸,p為橢圓上任意一點,直線PA,PB的斜率存在,則kPA . kPB為常數(shù)”.
A.①②
B.③④
C.①④
D.②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中, , ,點D是BC的中點. ( I)求證: ;
( II)直線l過點D且垂直于BC,E為l上任意一點,求證: 為常數(shù),并求該常數(shù);
( III)如圖2,若 ,F(xiàn)為線段AD上的任意一點,求 的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,則函數(shù)y=f(1﹣x)的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸相鄰兩個交點間的距離為 ,且圖象上一個最低點為M( ,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當x∈[ , ]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x+2|﹣|x+a|
(1)當a=3時,解不等式f(x)≤
(2)若關(guān)于x的不等式f(x)≤a解集為R,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACBAC3, BC2,P是△ABC內(nèi)的一點.

(1)若P是等腰直角三角形PBC的直角頂點,求PA的長;

(2)若∠BPC,設∠PCBθ,求△PBC的面積S(θ)的解析式,并求S(θ)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某著名歌星在某地舉辦一次歌友會,有1000人參加,每人一張門票,每張100元.在演出過程中穿插抽獎活動,第一輪抽獎從這1000張票根中隨機抽取10張,其持有者獲得價值1000元的獎品,并參加第二輪抽獎活動.第二輪抽獎由第一輪獲獎者獨立操作按鈕,電腦隨機產(chǎn)生兩個實數(shù)x,y(x,y∈[0,4]),若滿足y≥ ,電腦顯示“中獎”,則抽獎者再次獲得特等獎獎金;否則電腦顯示“謝謝”,則不獲得特等獎獎金.
(1)已知小明在第一輪抽獎中被抽中,求小明在第二輪抽獎中獲獎的概率;
(2)設特等獎獎金為a元,小李是此次活動的顧客,求小李參加此次活動獲益的期望;若該歌友會組織者在此次活動中獲益的期望值是至少獲得70000元,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P(2,0)及圓C:x2+y2﹣6x+4y+4=0.
(1)設過P直線l1與圓C交于M、N兩點,當|MN|=4時,求以MN為直徑的圓Q的方程;
(2)設直線ax﹣y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案