2.已知R是實(shí)數(shù)集,集合A={x|($\frac{1}{2}$)2x+1≤$\frac{1}{16}$},B={x|log4(3-x)<0.5},則(∁RA)∩B=(  )
A.(1,2)B.(1,2)C.(1,3)D.(1,1.5)

分析 解不等式化簡(jiǎn)集合A、B,根據(jù)補(bǔ)集與交集的定義計(jì)算即可.

解答 解:集合A={x|($\frac{1}{2}$)2x+1≤$\frac{1}{16}$}={x|2x+1≥4}={x|x≥$\frac{3}{2}$},
B={x|log4(3-x)<0.5}={x|0<3-x<2}={x|1<x<3},
∴∁RA={x|x<$\frac{3}{2}$},
∴(∁RA)∩B={x|1<x<$\frac{3}{2}$}=(1,1.5).
故選:D.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)定義在R上的函數(shù)f(x)滿足:對(duì)于任意的x1、x2∈R,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2).
(1)若f(x)=ax3+1,求a的取值范圍;
(2)若f(x)是周期函數(shù),證明:f(x)是常值函數(shù);
(3)設(shè)f(x)恒大于零,g(x)是定義在R上的、恒大于零的周期函數(shù),M是g(x)的最大值.函數(shù)h(x)=f(x)g(x).證明:“h(x)是周期函數(shù)”的充要條件是“f(x)是常值函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知平面向量$\overrightarrow{a}$=(m,n),平面向量$\overrightarrow$=(p,q),(其中m,n,p,q∈Z).
定義:$\overrightarrow{a}$?$\overrightarrow$=(mp-nq,mq+np).若$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,1),則$\overrightarrow{a}$?$\overrightarrow$=(0,5);
若$\overrightarrow{a}$?$\overrightarrow$=(5,0),且|$\overrightarrow{a}$|<5,|$\overrightarrow$|<5,則$\overrightarrow{a}$=(2,1),$\overrightarrow$=(2,-1)(寫出一組滿足此條件的$\overrightarrow{a}$和$\overrightarrow$即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={1,2,3,4,5},B=(2,4,6),P=A∩B,則集合P的子集有( 。
A.2個(gè)B.4個(gè)C.6個(gè)D.8個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{lnx+1}{{e}^{x}}$(e是自然對(duì)數(shù)的底數(shù)),h(x)=1-x-xlnx.
(1)求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求h(x)的單調(diào)區(qū)間;
(3)設(shè)g(x)=xf′(x),其中f′(x)為f(x)的導(dǎo)函數(shù),證明:對(duì)任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)命題p:f(x)=$\frac{2}{x-m}$在區(qū)間(1,+∞)上是減函數(shù);命題q:2x-1+2m>0對(duì)任意x∈R恒成立.若(¬p)∧q為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知sinα=3sin(α+$\frac{π}{6}$),則tan(α+$\frac{π}{12}$)=2$\sqrt{3}$-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖所示的流程圖中,輸出的S為$\frac{25}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.劉老師是一位經(jīng)驗(yàn)豐富的高三理科班班主任,經(jīng)長(zhǎng)期研究,他發(fā)現(xiàn)高中理科班的學(xué)生的數(shù)學(xué)成績(jī)(總分150分)與理綜成績(jī)(物理、化學(xué)與生物的綜合,總分300分)具有較強(qiáng)的線性相關(guān)性,以下是劉老師隨機(jī)選取的八名學(xué)生在高考中的數(shù)學(xué)得分x與理綜得分y(如表):
學(xué)生編號(hào)12345678
數(shù)學(xué)分?jǐn)?shù)x52648796105123132141
理綜分?jǐn)?shù)y112132177190218239257275
參考數(shù)據(jù)及公式:$\widehaty=a+bx,b=\frac{{{x_1}{y_1}+{x_2}{y_2}+…+{x_n}{y_n}-n\overline x\overline y}}{{x_1^2+x_2^2+…+x_n^2-n{{\overline x}^2}}}≈1.83,\overline x=100,\overline y=200$.
(1)求出y關(guān)于x的線性回歸方程;
(2)若小汪高考數(shù)學(xué)110分,請(qǐng)你預(yù)測(cè)他理綜得分約為多少分?(精確到整數(shù)位);
(3)小金同學(xué)的文科一般,語文與英語一起能穩(wěn)定在215分左右.如果他的目標(biāo)是在高考總分沖擊600分,請(qǐng)你幫他估算他的數(shù)學(xué)與理綜大約分別至少需要拿到多少分?(精確到整數(shù)位).

查看答案和解析>>

同步練習(xí)冊(cè)答案