10.已知集合A={1,2,3,4,5},B=(2,4,6),P=A∩B,則集合P的子集有(  )
A.2個B.4個C.6個D.8個

分析 由A與B,求出兩集合的交集,即可確定出交集的子集個數(shù).

解答 解:∵集合A={1,2,3,4,5},B=(2,4,6),
∴P=A∩B={1,2,3,4,5}∩(2,4,6)=(2,4).
∴集合P的子集有22=4.
故選:B.

點(diǎn)評 本題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=ax3-2x2+1,若f(x)存在唯一的零點(diǎn)x0,且x0<0,則實(shí)數(shù)a的取值范圍為( 。
A.(2,+∞)B.(0,$\frac{\sqrt{6}}{9}$)C.(-∞,-$\frac{4\sqrt{6}}{9}$)D.($\frac{4\sqrt{6}}{9}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知曲線C的極坐標(biāo)方程是ρ=1,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為 $\left\{{\begin{array}{l}{x=1+\frac{t}{2}}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$( t為參數(shù)).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程與直線l的普通方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求A,B兩點(diǎn)之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若一個圓錐的側(cè)面展開圖是面積為$\frac{9}{2}π$的半圓面,則該圓錐的體積為$\frac{9\sqrt{3}π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知a<-1,函數(shù)f(x)=|x3-1|+x3+ax(x∈R).
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)已知存在實(shí)數(shù)m,n(m<n≤1),對任意t0∈(m,n),總存在兩個不同的t1,t2∈(1,+∞),
使得f(t0)-2=f(t1)=f(t2),求證:$n-m≤\frac{4}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)某物體一天中的溫度T是時間t的函數(shù),已知T(t)=t3+at2+bt+c,其中溫度的單位是℃,時間的單位是小時,規(guī)定中午12:00相應(yīng)的t=0,中午12:00以后相應(yīng)的t取正數(shù),中午12:00以前相應(yīng)的t取負(fù)數(shù)(例如早上8:00對應(yīng)的t=-4,下午16:00相應(yīng)的t=4),若測得該物體在中午12:00的溫度為60℃,在下午13:00的溫度為58℃,且已知該物體的溫度在早上8:00與下午16:00有相同的變化率.
(1)求該物體的溫度T關(guān)于時間t的函數(shù)關(guān)系式;
(2)該物體在上午10:00至下午14:00這段時間中(包括端點(diǎn))何時溫度最高?最高溫度是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知R是實(shí)數(shù)集,集合A={x|($\frac{1}{2}$)2x+1≤$\frac{1}{16}$},B={x|log4(3-x)<0.5},則(∁RA)∩B=( 。
A.(1,2)B.(1,2)C.(1,3)D.(1,1.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|x2-4x-5>0},B={x|x>2},則集合A∩B=( 。
A.B.(-∞,1)C.(2,+∞)D.(5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)f(x)=ex+ax2 無極值點(diǎn),則a的取值范圍是$[-\frac{e}{2},0]$.

查看答案和解析>>

同步練習(xí)冊答案