11.已知復(fù)數(shù)z滿足z=$\frac{{5i}^{5}}{2{-i}^{3}}$-3i,則復(fù)數(shù)z在復(fù)平面上對應(yīng)的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 化簡復(fù)數(shù)z,即可得出z在復(fù)平面內(nèi)的位置.

解答 解:∵z=$\frac{{5i}^{5}}{2{-i}^{3}}$-3i=$\frac{5i}{2+i}$-3i=$\frac{5i(2-i)}{(2+i)(2-i)}$-3i=(1+2i)-3i=1-i,
∴復(fù)數(shù)z在復(fù)平面上對應(yīng)的點(diǎn)在第四象限.

點(diǎn)評 本題考查了復(fù)數(shù)的化簡與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)集合A={x|x(x-3)<0},B={x|x-2≤0},則A∩B=(  )
A.(0,2]B.(0,2)C.(0,3)D.[2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在區(qū)間(-∞,t]上存在x,使得不等式x2-4x+t≤0成立,則實(shí)數(shù)t的取值范圍是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,且滿足bc=5,cos$\frac{A}{2}$=$\frac{3\sqrt{10}}{10}$.
(Ⅰ)求△ABC的面積;
(Ⅱ)若sinB=5sinC,求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=2sin(2x+φ)+1(|φ|<$\frac{π}{2}$),若f(x)<1,對x∈(-$\frac{π}{3}$,-$\frac{π}{12}$)恒成立,則f($\frac{π}{4}$)的最小值是( 。
A.1B.2C.-1D.-$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某單位從包括甲、乙在內(nèi)的5名應(yīng)聘者中招聘2人,如果這5名應(yīng)聘者被錄用的機(jī)會(huì)均等,則甲、乙兩人中至少有1人被錄用的概率是$\frac{7}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=2sinωx(0<ω<3)在[-$\frac{π}{6}$,0]上的最小值為-$\sqrt{3}$,當(dāng)把f(x)的圖象上所有的點(diǎn)向右平移$\frac{π}{3}$個(gè)單位后,得到函數(shù)g(x)的圖象.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,若函數(shù)g(x)在y軸右側(cè)的第一個(gè)零點(diǎn)恰為A,a=5,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x+4,x≥1}\\{lo{g}_{2}(1-x),x<1}\\{\;}\end{array}\right.$,則f(f(-1))等于( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=sin(x+θ)+mcos(x+2θ),其中m∈R,θ∈(-$\frac{π}{2}$,$\frac{π}{2}$).若f($\frac{π}{2}$)=0,f(π)=1
(1)求m,θ的值;
(2)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,f(A)=-$\frac{1}{2}$,a=1,求△ABC的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案