【題目】已知函數(shù), .

(Ⅰ)證明: ,直線都不是曲線的切線;

(Ⅱ)若,使成立,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ)見(jiàn)解析; (Ⅱ).

【解析】試題分析:(Ⅰ)設(shè)出切點(diǎn),分別用函數(shù)的導(dǎo)數(shù)值和直線的兩點(diǎn)表示斜率,得方程,發(fā)現(xiàn)方程的解為,與定義域矛盾;

(Ⅱ)原問(wèn)題轉(zhuǎn)化為,令, , 則,使成立,討論函數(shù)的最小值即可.

試題解析:

(Ⅰ)的定義域?yàn)?/span>, ,直線過(guò)定點(diǎn)

若直線與曲線相切于點(diǎn)),則 ,即

,①

設(shè) ,則,所以上單調(diào)遞增,又,從而當(dāng)且僅當(dāng)時(shí),①成立,這與矛盾.

所以, ,直線都不是曲線的切線;

(Ⅱ),令,

,使成立

,

(1)當(dāng)時(shí), 上為減函數(shù),于是

,滿足,所以符合題意;

(2)當(dāng)時(shí),由的單調(diào)性知 上為增函數(shù),所以,即,

①若,即,則,所以上為增函數(shù),于是

,不合題意;

②若,即則由, 的單調(diào)性知存在唯一,使,且當(dāng)時(shí), 為減函數(shù);當(dāng)時(shí), , 為增函數(shù);

所以 ,由 ,這與矛盾,不合題意.

綜上可知, 的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的最小正周期為
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若曲線處的切線平行于直線,求a的值;

(2)討論函數(shù)的單調(diào)性;

(3) 若,且對(duì)時(shí),恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分圖象如圖所示,其中A,B兩點(diǎn)之間的距離為5,則f(x)的解析式是(

A.y=2sin( x+
B.y=2sin( x+
C.y=2sin( x+
D.y=2sin( x+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次抽樣調(diào)查中測(cè)得樣本的6組數(shù)據(jù),得到一個(gè)變量關(guān)于的回歸方程模型,其對(duì)應(yīng)的數(shù)值如下表:

2

3

4

5

6

7

(1)請(qǐng)用相關(guān)系數(shù)加以說(shuō)明之間存在線性相關(guān)關(guān)系(當(dāng)時(shí),說(shuō)明之間具有線性相關(guān)關(guān)系);

(2)根據(jù)(1)的判斷結(jié)果,建立關(guān)于的回歸方程并預(yù)測(cè)當(dāng)時(shí),對(duì)應(yīng)的值為多少(精確到).

附參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:

,,相關(guān)系數(shù)公式為:.

參考數(shù)據(jù):

,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求不等式的解集;

(2)如果恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程 在(0,2π)內(nèi)有相異兩解α,β,則α+β=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中, 平面,底面為矩形, ,該四棱錐的外接球的體積為,則到平面的距離為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C ab>0)的焦距為,且橢圓C過(guò)點(diǎn)A1, ),

(Ⅰ)求橢圓C的方程;

(Ⅱ)若O是坐標(biāo)原點(diǎn),不經(jīng)過(guò)原點(diǎn)的直線L:y=kx+m與橢圓交于兩不同點(diǎn)P(x1,y1),Q(x2,y2),且y1y2=k2x1x2,求直線L的斜率k;

(Ⅲ)在(Ⅱ)的條件下,求△OPQ面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案