【題目】已知函數(shù)

(1)若曲線處的切線平行于直線,求a的值;

(2)討論函數(shù)的單調(diào)性;

(3) 若,且對時,恒成立,求實(shí)數(shù)的取值范圍

【答案】(1) (2) 當(dāng)時,遞增;當(dāng)時,遞減,在遞增; (3)

【解析】試題分析:(1)根據(jù)曲線處的切線平行于直線,,得出a值;(2)對函數(shù)求導(dǎo),討論,兩種情況得單調(diào)性(3)時,恒成立可選擇變量分離,構(gòu)造新函數(shù)研究最值,得結(jié)果.

試題解析:

(1) 定義域?yàn)?/span>

直線的斜率為,


(2)定義域?yàn)?/span>,,若,則遞增;

,令;令;

綜上得:當(dāng)時,遞增;當(dāng)時,遞減,在遞增;

(3) ,且對時,恒成立

. 即

設(shè)

,

當(dāng)時, ,為增函數(shù)

當(dāng)時, ,為減函數(shù)

所以當(dāng)時,函數(shù)上取到最大值,且

所以 所以

所以實(shí)數(shù)的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),求:

(Ⅰ)過點(diǎn)與原點(diǎn)距離為2的直線的方程;

(Ⅱ)過點(diǎn)與原點(diǎn)距離最大的直線的方程,最大距離是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)組織了一次高二文科學(xué)生數(shù)學(xué)學(xué)業(yè)水平模擬測試,學(xué)校從測試合格的男、女生中各隨機(jī)抽取100人的成績進(jìn)行統(tǒng)計分析,分別制成了如圖所示的男生和女生數(shù)學(xué)成績的頻率分布直方圖.

(Ⅰ)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?

(Ⅱ)在(Ⅰ)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), = .

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)有兩個零點(diǎn).

(1)求滿足條件的最小正整數(shù)的值;

(2)求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某港口處獲悉,其正東方向距離20n mile的處有一艘漁船遇險等待營救,此時救援船在港口的南偏西30°距港口10n mile的C處,救援船接到救援命令立即從C處沿直線前往B處營救漁船.

(1)求接到救援命令時救援船距漁船的距離;

(2)試問救援船在C處應(yīng)朝北偏東多少度的方向沿直線前往B處救援?(已知

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用1、2、3、4、5、6這六個數(shù)字可組成多少個無重復(fù)數(shù)字且不能被5整除的五位數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中在點(diǎn)處的導(dǎo)數(shù), 為常數(shù)).

(1)求的值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)設(shè)函數(shù),若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)證明: ,直線都不是曲線的切線;

(Ⅱ)若,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, 是正三角形,四邊形是矩形,且.

(1)求證:平面平面;

(2)若點(diǎn)在線段上,且,當(dāng)三棱錐的體積為時,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案