【題目】某商場(chǎng)按月訂購(gòu)一種家用電暖氣,每銷(xiāo)售一臺(tái)獲利潤(rùn)200元,未銷(xiāo)售的產(chǎn)品返回廠家,每臺(tái)虧損50元,根據(jù)往年的經(jīng)驗(yàn),每天的需求量與當(dāng)天的最低氣溫有關(guān),如果最低氣溫位于區(qū)間,需求量為100臺(tái);最低氣溫位于區(qū)間,需求量為200臺(tái);最低氣溫位于區(qū)間,需求量為300臺(tái)。公司銷(xiāo)售部為了確定11月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年11月份各天的最低氣溫?cái)?shù)據(jù),得到下面的頻數(shù)分布表:
最低氣溫(℃) | |||||
天數(shù) | 11 | 25 | 36 | 16 | 2 |
以最低氣溫位于各區(qū)間的頻率代替最低氣溫位于該區(qū)間的概率.
求11月份這種電暖氣每日需求量(單位:臺(tái))的分布列;
若公司銷(xiāo)售部以每日銷(xiāo)售利潤(rùn)(單位:元)的數(shù)學(xué)期望為決策依據(jù),計(jì)劃11月份每日訂購(gòu)200臺(tái)或250臺(tái),兩者之中選其一,應(yīng)選哪個(gè)?
【答案】(1)X的分布列為
X | 100 | 200 | 300 |
P | 0.2 | 0.4 | 0.4 |
(2)11月每日應(yīng)訂購(gòu)250臺(tái).
【解析】試題分析:(1)由題意,易知離散型隨機(jī)變量X的可能取值為100,200,300,根據(jù)“頻率代替概率”分別求出各值對(duì)應(yīng)的概率,從而可列出X的分布列;(2)根據(jù)題意,由隨機(jī)變量的期望值公式,分別算出訂購(gòu)200臺(tái),250臺(tái)的數(shù)學(xué)期望進(jìn)行比較,從而可確定訂購(gòu)250臺(tái)時(shí)所得期望值最大.
試題解析:(1)由已知X的可能取值為100,200,300
X的分布列為
X | 100 | 200 | 300 |
P | 0.2 | 0.4 | 0.4 |
(2) 由已知
①當(dāng)訂購(gòu)200臺(tái)時(shí),
E((元)
② 當(dāng)訂購(gòu)250臺(tái)時(shí),
E(
(元)
綜上所求,當(dāng)訂購(gòu)臺(tái)時(shí),Y的數(shù)學(xué)期望最大,11月每日應(yīng)訂購(gòu)250臺(tái)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣ex(a∈R).其中e是自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)f(x)的單調(diào)性并求極值;
(2)令函數(shù)g(x)=f(x)+ex,若x∈[1,+∞)時(shí),g(x)≥0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)分別是圓心在原點(diǎn),半徑為和的圓上的動(dòng)點(diǎn).動(dòng)點(diǎn)從初始位置開(kāi)始,按逆時(shí)針?lè)较蛞越撬俣?/span>作圓周運(yùn)動(dòng),同時(shí)點(diǎn)從初始位置開(kāi)始,按順時(shí)針?lè)较蛞越撬俣?/span>作圓周運(yùn)動(dòng).記時(shí)刻,點(diǎn)的縱坐標(biāo)分別為.
(Ⅰ)求時(shí)刻,兩點(diǎn)間的距離;
(Ⅱ)求關(guān)于時(shí)間的函數(shù)關(guān)系式,并求當(dāng)時(shí),這個(gè)函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)數(shù)m取什么值時(shí),復(fù)平面內(nèi)表示復(fù)數(shù)z=(m2-8m+15)+(m2-5m-14)i的點(diǎn).
(1)位于第四象限?
(2)位于第一、三象限?
(3)位于直線y=x上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為n的樣本,得到一周參加社區(qū)服務(wù)的時(shí)間的統(tǒng)計(jì)數(shù)據(jù)如下表:
超過(guò)1小時(shí) | 不超過(guò)1小時(shí) | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95多的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時(shí)間是否超過(guò)1小時(shí)與性別有關(guān)?
(3)以樣本中學(xué)生參加社區(qū)服務(wù)時(shí)間超過(guò)1小時(shí)的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學(xué)生中隨機(jī)調(diào)查6名學(xué)生,試估計(jì)6名學(xué)生中一周參加社區(qū)服務(wù)時(shí)間超過(guò)1小時(shí)的人數(shù).
附:
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為紀(jì)念重慶黑山谷晉升國(guó)家5A級(jí)景區(qū)五周年,特發(fā)行黑山谷紀(jì)念郵票,從2017年11月1日起開(kāi)始上市.通過(guò)市場(chǎng)調(diào)查,得到該紀(jì)念郵票在一周內(nèi)每1張的市場(chǎng)價(jià)y(單位:元)與上市時(shí)間x(單位:天)的數(shù)據(jù)如下:
上市時(shí)間x天 | 1 | 2 | 6 |
市場(chǎng)價(jià)y元 | 5 | 2 | 10 |
(Ⅰ)分析上表數(shù)據(jù),說(shuō)明黑山谷紀(jì)念郵票的市場(chǎng)價(jià)y(單位:元)與上市時(shí)間x(單位:天)的變化關(guān)系,并判斷y與x滿足下列哪種函數(shù)關(guān)系,①一次函數(shù);②二次函數(shù);③對(duì)數(shù)函數(shù),并求出函數(shù)的解析式;
(Ⅱ)利用你選取的函數(shù),求黑山谷紀(jì)念郵票市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩種商品,經(jīng)營(yíng)銷(xiāo)售這兩種商品所能獲得的利潤(rùn)依次是P(萬(wàn)元)和Q(萬(wàn)元),它們與投入資金x(萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式:P=,Q= .今有3萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,為獲得最大利潤(rùn),對(duì)甲、乙兩種商品的資金投入分別應(yīng)為多少?能獲得的最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的右頂點(diǎn)到其一條漸近線的距離等于,拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則拋物線上的動(dòng)點(diǎn)到直線和距離之和的最小值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com