2.下列命題中的假命題是( 。
A.?x∈R,lgx=0B.?x∈R,x3>0C.?x∈R,2x>0D.?x∈R,x2+2x-5=0

分析 利用全稱命題與特稱命題的概念對A、B、C、D四個(gè)選項(xiàng)逐一判斷即可.

解答 解:對于A,x=1時(shí),lg1=0,∴A是真命題;
對于B,x=-1時(shí),(-1)3=-1<0,∴B是假命題;
對于C,由指數(shù)函數(shù)的性質(zhì)可知?x∈R,2x>0,∴C是真命題;
對于D,x2+2x-5=0解得$x=-1±\sqrt{6}$可知方程成立,∴D是真命題.
故選:B.

點(diǎn)評 本題考查全稱命題與特稱命題的概念及應(yīng)用,考查了指數(shù)函數(shù)、二次函數(shù)、對數(shù)函數(shù)的性質(zhì)及應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若如圖框圖所給的程序運(yùn)行結(jié)果為S=254,那么判斷框中應(yīng)填入的條件是( 。
A.n<7?B.n≤7?C.n>7?D.n≥7?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,且過點(diǎn)P($\sqrt{2}$,$\frac{\sqrt{3}}{3}$).
(1)求橢圓C的方程;
(2)已知直線l:y=kx+m被圓O:x2+y2=2截得的弦長為2,且與橢圓C相交于兩點(diǎn)A、B兩點(diǎn),求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知某家電生產(chǎn)企業(yè)根據(jù)市場調(diào)查分析,決定調(diào)整產(chǎn)品生產(chǎn)方案,準(zhǔn)備每周(按50個(gè)工時(shí)計(jì)算)生產(chǎn)空調(diào)器、彩電、冰箱共120臺,且冰箱至少生產(chǎn)30臺,已知生產(chǎn)這些家電產(chǎn)品每臺所需工時(shí)和每臺產(chǎn)值如表:
家電名稱空調(diào)器彩電冰箱
工時(shí) $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{3}$
產(chǎn)值/千元543
問每周應(yīng)生產(chǎn)空調(diào)器、彩電、冰箱各多少臺,才能使產(chǎn)值最高?最高產(chǎn)值是多少?(以千元為單位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)a>0,則9a+$\frac{a+4}{a}$的最小值為13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知全集U=R,非空集合A={x|x2-5x+6<0},B={x||x-a|<3}.
(1)當(dāng)a=2時(shí),求(∁UA)∩B;
(2)命題p:x∈A,命題q:x∈B,若p是q的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若集合A={x|x2<2x+3},集合B={x|x<2},則A∩B等于(  )
A.(-3,1)B.(-3,2)C.(-1,1)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知等差數(shù)列{an}滿足a2+a7=a5+3,則a4=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}},{-1<x≤1}\\{f(x-2)+1},{1<x≤3}\end{array}\right.$,則函數(shù)g(x)=f(f(x))-2在區(qū)間(-1,3]上的零點(diǎn)個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案