已知函數(shù)f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.
(Ⅰ)當(dāng)a∈[-2,2]時(shí),求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若對(duì)于任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,求b的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:( I)先求出f'(x),得出x∈(-∞,0),f'(x)<0;x∈(0,+∞),f'(x)>0,從而f(0)=b是唯一極值.
(Ⅱ)由題意得函數(shù)f(x)在[-1,1]上的最大值是f(1)與f(-1)兩者中的較大者.有
b≤-2-a
b≤-2+a
,在a∈[-2,2]上恒成立,從而求出b的范圍.
解答: 解:( I)f'(x)=x(4x2+3ax+4),
顯然a∈[-2,2]4x2+3ax+4>0.
當(dāng)x∈(-∞,0),f′(x)<0;
x∈(0,+∞),f′(x)>0,
所以f(0)=b是唯一極值.
(Ⅱ)由條件a∈[-2,2],可知△=9a2-64<0,從而4x2+3ax+4>0恒成立.
當(dāng)x<0時(shí),f′(x)<0;當(dāng)x>0時(shí),f'(x)>0.
因此函數(shù)f(x)在[-1,1]上的最大值是f(1)與f(-1)兩者中的較大者.
為使對(duì)任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,
當(dāng)且僅當(dāng)
f(1)≤1
f(-1)≤1
,即
b≤-2-a
b≤-2+a
,在a∈[-2,2]上恒成立.
所以b≤-4,因此滿足條件的b的取值范圍是(-∞,-4].
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性,函數(shù)的極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+b圖象上的點(diǎn)P(2,1)關(guān)于直線y=-x的對(duì)稱點(diǎn)Q在函數(shù)g(x)=ln(-x)+a上.
(Ⅰ)設(shè)h(x)=g(x)-f(x),求h(x)的最大值;
(Ⅱ)對(duì)任意x1∈[-e,-1],x2∈[
e
,e2],不等式2k[g(x1)+2]+f(x1)-6<ln[f(x2)+3]恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知函數(shù)y=Asin(ωx+φ)(A>0,0<φ<π)的圖象經(jīng)過(guò)點(diǎn)(-
π
6
,0)、(
5
6
π,0),且該函數(shù)的最大值為2,最小值為-2,
(1)求函數(shù)的解析式; 
(2)求函數(shù)的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求雙曲線3x2-y2=3的實(shí)半軸長(zhǎng)和虛半軸長(zhǎng),焦點(diǎn)坐標(biāo),離心率,漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明:函數(shù)f(x)=-x3+1在(-∞,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知橢圓的短軸與焦距相等,求橢圓的離心率;
(2)已知正方形ABCD,求以A、B為焦點(diǎn),且過(guò)C、D兩點(diǎn)的橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+b(a≠0),試分別就a>0,a<0探討f(x)的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(5,1,3)、B(1,6,2)、C(5,0,4)、D(4,0,6),求過(guò)AD且垂直于平面ABC的一個(gè)法向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程為2x+y=0,且頂點(diǎn)到漸近線的距離為
2
5
5
.  
(1)求此雙曲線的方程;
(2)設(shè)點(diǎn)P為雙曲線上一點(diǎn),A、B兩點(diǎn)在雙曲線的漸近線上,且分別位于第一、第二象限,若
AP
=
PB
,求△AOP的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案