20.已知$α∈({0\;,\;\;\frac{π}{2}})\;,\;\;sinα=\frac{{\sqrt{5}}}{5}$.
(1)求$sin({α+\frac{π}{4}})$的值;
(2)求tan2α的值.

分析 (1)利用同角三角函數(shù)的基本關(guān)系,兩角和差的三角公式,求得$sin({α+\frac{π}{4}})$的值.
(2)先求得tanα的值,再利用二倍角公式求得tan2α的值.

解答 解:(1)∵已知$α∈({0\;,\;\;\frac{π}{2}})\;,\;\;sinα=\frac{{\sqrt{5}}}{5}$.
∴$cosα=\frac{2}{5}\sqrt{5}$,∴sin(α+$\frac{π}{4}$)=sinαcos$\frac{π}{4}$+cosαsin$\frac{π}{4}$=$\frac{\sqrt{5}}{5}$•$\frac{\sqrt{2}}{2}$+$\frac{2\sqrt{5}}{5}$•$\frac{\sqrt{2}}{2}$=$\frac{3\sqrt{10}}{10}$.
(2)∵tanα=$\frac{sinα}{cosα}$=$\frac{1}{2}$,∴tan2α=$\frac{2tanα}{1{-tan}^{2}α}$=$\frac{4}{3}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式,兩角和差的三角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在${({x-\frac{1}{x}-1})^4}$的展開式中,常數(shù)項為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.△ABC的角A,B,C所對的邊分別是a,b,c,若$cosA=\frac{7}{8}$,c-a=2,b=3.
(I)求a和sinB;
(II)求$sin(2A+\frac{π}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)$f(x)=\frac{{63{e^x}}}{a}-\frac{{32{e^x}}}$(x∈R)為奇函數(shù),則ab=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}的前n項和為${S_n}=5{n^2}+10n$,(其中n∈N*),則a3=35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在△ABC中,∠C為直角,AC=BC=4.沿△ABC的中位線DE,將平面ADE折起,使得∠ADC=90°,得到四棱錐A-BCDE.
(Ⅰ)求證:BC⊥平面ACD;
(Ⅱ)求三棱錐E-ABC的體積;
(Ⅲ)M是棱CD的中點,過M作平面α與平面ABC平行,設(shè)平面α截四棱錐A-BCDE所得截面面積為S,試求S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.我國古代數(shù)學(xué)名著《九章算術(shù)》中的更相減損術(shù)的算法思路與右圖類似.記R(a\b)為a除以b所得的余數(shù)(a,b∈N*),執(zhí)行程序框圖,若輸入a,b分別為266,63,則輸出的b的值為( 。
A.1B.3C.7D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,在平行四邊形ABCD中,已知AB=8,AD=5,$\overrightarrow{CP}$=3$\overrightarrow{PD}$,$\overrightarrow{AP}$•$\overrightarrow{BP}$=2,則$\overrightarrow{AB}$•$\overrightarrow{AD}$的值是( 。
A.8B.12C.22D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$cos({θ+π})=-\frac{1}{4}$,則$sin({2θ+\frac{π}{2}})$=$-\frac{7}{8}$.

查看答案和解析>>

同步練習(xí)冊答案