【題目】已知關(guān)于的不等式,其中

1)試求不等式的解集;

2)對于不等式的解集,記(其中為整數(shù)集),若集合為有限集,求實(shí)數(shù)的取值范圍,使得集合中元素個(gè)數(shù)最少,并用列舉法表示集合;

【答案】1)答案見解析 2

【解析】

1)對進(jìn)行分類討論,分別討論,,,的情況,進(jìn)而求解即可;

2)由(1)可知當(dāng)時(shí),集合為有限集,利用對勾函數(shù)可知,當(dāng)且僅當(dāng)時(shí)等號成立,進(jìn)而求解即可

1)當(dāng),;

當(dāng)時(shí),令,解得,

則當(dāng)時(shí),,當(dāng)時(shí),,

①當(dāng),;

②當(dāng),;

③當(dāng),;

2)因?yàn)?/span>(其中為整數(shù)集),

由(1),當(dāng)時(shí),集合中的元素的個(gè)數(shù)無限;

當(dāng)時(shí),集合中的元素的個(gè)數(shù)有限,此時(shí)集合為有限集,

因?yàn)?/span>,所以,當(dāng)且僅當(dāng),時(shí)等號成立,

所以當(dāng)時(shí),集合的元素個(gè)數(shù)最少,此時(shí),

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中為常數(shù)且.新定義:若滿足,則稱的回旋點(diǎn).

1)當(dāng)時(shí),分別求的值;

2)當(dāng)時(shí),求函數(shù)的解析式,并求出回旋點(diǎn);

3)證明函數(shù)有且僅有兩個(gè)回旋點(diǎn),并求出回旋點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】楊輝三角是二項(xiàng)式系數(shù)在三角形中的一種排列,在歐洲這個(gè)表叫做帕斯卡三角形,帕斯卡是在1654年發(fā)現(xiàn)這一規(guī)律的,我國南宋數(shù)學(xué)家楊輝在1261年所著的《詳解九章算法》一書中出現(xiàn)了如圖所示的表,這是我國數(shù)學(xué)史上的一次偉大成就,如圖所示,在楊輝三角中去除所有為1的項(xiàng),依次構(gòu)成數(shù)列,23,3,46,4,5 ,10 ,105,……,則此數(shù)列的前119項(xiàng)的和為__________(參考數(shù)據(jù):,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店經(jīng)營的一種商品進(jìn)行進(jìn)價(jià)是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價(jià)(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開支均為25元.

(1)根據(jù)周銷售量圖寫出(件)與單價(jià)(元)之間的函數(shù)關(guān)系式;

(2)寫出利潤(元)與單價(jià)(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價(jià)格為多少元時(shí),周利潤最大?并求出最大周利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為SnnN*),等比數(shù)列{bn}的前n項(xiàng)和為TnnN*),已知a13,b11,a3+b210,S3T211

(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式:

(Ⅱ)若數(shù)列{cn}滿足c11cn+1cnan,求c100;

(Ⅲ)設(shè)數(shù)列dnanbn,求{dn}的前n項(xiàng)和Kn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C的中心在原點(diǎn),拋物線的焦點(diǎn)是雙曲線C的一個(gè)焦點(diǎn),且雙曲線過點(diǎn)

(Ⅰ)求雙曲線的方程;

(Ⅱ)設(shè)直線與雙曲線C交于A,B兩點(diǎn),試問:k為何值時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)購平臺(tái)為了解某市居民在該平臺(tái)的消費(fèi)情況,從該市使用其平臺(tái)且每周平均消費(fèi)額超過100元的人員中隨機(jī)抽取了100名,并繪制右圖所示頻率分布直方圖,已知中間三組的人數(shù)可構(gòu)成等差數(shù)列.

(1)求的值;

(2)分析人員對抽取對象每周的消費(fèi)金額y與年齡x進(jìn)一步分析,發(fā)現(xiàn)他們線性相關(guān),得到回歸方程.已知100名使用者的平均年齡為38歲,試判斷一名年齡為22歲的年輕人每周的平均消費(fèi)金額為多少.(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值代替)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】宿州泗縣石龍湖國家濕地公園是保存完好的典型濕地生態(tài)系統(tǒng),具有得天獨(dú)厚的旅游資源.某日一游船在湖上游玩航行中突然遇險(xiǎn),發(fā)出呼救信號,駐湖救援隊(duì)在處獲悉后,立即測出該游船在北偏東方向上,距離千米的處,并測得游船正沿東偏南的方向,以千米/時(shí)的速度向湖心小島靠攏,救援艦艇立即以千米/時(shí)的速度前去營救,若想用最短的時(shí)間營救游船,求艦艇的航行方向和所需時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】5個(gè)匣子,每個(gè)匣子有一把鑰匙,并且鑰匙不能通用.如果隨意在每一個(gè)匣內(nèi)放入一把鑰匙,然后把匣子全都鎖上.現(xiàn)在允許砸開一個(gè)匣子,使得能相繼用鑰匙打開其余4個(gè)匣子,那么鑰匙的放法有______種.

查看答案和解析>>

同步練習(xí)冊答案