(其中m,n∈{-1,2,3})所表示的圓錐曲線(橢圓、雙曲線、拋物線)方程中任取一個(gè),則此方程是焦點(diǎn)在x軸上的雙曲線方程的概率為

[  ]
A.

B.

C.

D.

答案:B
解析:

一一列舉可知方程表示的圓錐曲線方程有7個(gè),其中焦點(diǎn)在x軸上的雙曲線方程有4個(gè),所以所求概率為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江模擬)袋中裝有大小、形狀完全相同的m個(gè)紅球和n個(gè)白球,其中m,n滿足:m>n>1且m+n≤15,m,n∈N*.已知從袋中任取2個(gè)球,取出的2個(gè)球是同色的概率等于取出的2個(gè)球是異色的概率.現(xiàn)從袋中任取2個(gè)球,設(shè)取到紅球的個(gè)數(shù)為ξ,則ξ的期望Eξ=
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)自行設(shè)計(jì)了兩條某種大型設(shè)備的生產(chǎn)線,分別稱為1號(hào)線和2號(hào)線,經(jīng)過兩年的運(yùn)行,每條生產(chǎn)線生產(chǎn)一臺(tái)合格的該大型設(shè)備的時(shí)間數(shù)據(jù)統(tǒng)計(jì)如下表:
時(shí)間(天) 15~25 25~35 35~45 45~55 55~65
1號(hào)線生產(chǎn)一臺(tái)合格的該大型設(shè)備的頻率 0.1 0.15 0.45 0.2 0.1
1號(hào)線生產(chǎn)一臺(tái)合格的該大型設(shè)備的頻率 0 0.25 0.4 0.3 0.05
其中m~n表示生產(chǎn)一臺(tái)合格的該大型設(shè)備的時(shí)間大于m天而不超過n天,m,n為正整數(shù).
(Ⅰ)現(xiàn)該企業(yè)接到甲、乙兩公司各一個(gè)訂單,每個(gè)公司需要生產(chǎn)一臺(tái)合格的該大型設(shè)備,甲、乙兩公司要求交貨時(shí)間分別為不超過45天和55天,為了盡最大可能在甲、乙兩公司訂單要求的時(shí)間內(nèi)交貨,該企業(yè)應(yīng)如何選擇生產(chǎn)甲、乙兩公司訂購(gòu)的該大型設(shè)備的生產(chǎn)線;
(Ⅱ)該企業(yè)生產(chǎn)的這種大型設(shè)備的質(zhì)量,以其質(zhì)量等級(jí)系數(shù)t來(lái)衡量,t的值越大表明質(zhì)量越好,如圖是兩條生產(chǎn)線生產(chǎn)的6臺(tái)合格的該大型設(shè)備的質(zhì)量等級(jí)系數(shù)的莖葉圖,
試從質(zhì)量等級(jí)系數(shù)的平均數(shù)和方差的角度對(duì)該企業(yè)的兩條生產(chǎn)線生產(chǎn)的這種合格的大型設(shè)備的質(zhì)量做出分析.
附:方差S2=
1
n
[(x1-
.
x
)2+(x2-
.
x
)2
+…(xn-
.
x
)2]
,其中
.
x
為x1,x2,…xn的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•孝感模擬)袋子中裝有大小形狀完全相同的m個(gè)紅球和n個(gè)白球,其中m,n滿足m>n≥2且m+n≤l0(m,n∈N+),若從中取出2個(gè)球,取出的2個(gè)球是同色的概率等于取出的2個(gè)球是異色的概率.
(I)求m,n的值;
(Ⅱ)從袋子中任取3個(gè)球,設(shè)取到紅球的個(gè)數(shù)為f,求f的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西省吉水中學(xué)2012屆高三周考數(shù)學(xué)理科試卷(十) 題型:013

(其中m,n∈{-1,2,3})所表示的圓錐曲線(橢圓、雙曲線、拋物線)方程中任取一個(gè),則此方程是焦點(diǎn)在x軸上的雙曲線方程的概率為

[  ]
A.

B.

C.

D.

查看答案和解析>>

同步練習(xí)冊(cè)答案