設(shè)點(diǎn)P(4m,m),圓C:x2+y2-2x-4y+3=0,判斷點(diǎn)P和圓C的位置關(guān)系.
考點(diǎn):點(diǎn)與圓的位置關(guān)系
專題:直線與圓
分析:求出圓的圓心與半徑,通過圓心與P的距離與圓的半徑比較,判斷結(jié)果即可.
解答: 解:圓C:x2+y2-2x-4y+3=0,圓心(1,2);半徑為:
2

圓心與P的距離為:
(4m-1)2+(m-2)2
=
17m2-12m+5
,
當(dāng)
17m2-12m+5
2
時(shí),即17m2-12m+3≤0,∵△=-60<0,所以不等式無(wú)解,
所以
17m2-12m+5
2
,即17m2-12m+3>0恒成立,
點(diǎn)在圓外.
點(diǎn)評(píng):本題考查點(diǎn)與圓的位置關(guān)系,兩點(diǎn)的距離公式等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:log3
3
 
+log816+4log413

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若θ為曲線y=x3+3x2+ax+2的切線的傾斜角,且所有θ組成的集合為[
π
4
,
π
2
),則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)遞增數(shù)列{an}滿足al=1,al、a2、a5成等比數(shù)列,且對(duì)任意n∈N*,函數(shù).f( x)=(an+2-an+1)x-(an-an-1)sinx+ancosx滿足f′(π)=0.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{an}的前n項(xiàng)和為Sn,bn=
1
Sn
,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)仔細(xì)閱讀以下材料:
已知f(x)是定義在(0,+∞)上的單調(diào)遞增函數(shù).
求證:命題“設(shè)a,b∈R+,若ab>1,則f(a)+f(b)>f(
1
a
)+f(
1
b
)
”是真命題.
證明 因?yàn)閍,b∈R+,由ab>1得a>
1
b
>0.
又因?yàn)閒(x)是定義在(0,+∞)上的單調(diào)遞增函數(shù),
于是有f(a)>f(
1
b
)
.      ①
同理有f(b)>f(
1
a
)
.      ②
由①+②得f(a)+f(b)>f(
1
a
)+f(
1
b
)

故,命題“設(shè)a,b∈R+,若ab>1,則f(a)+f(b)>f(
1
a
)+f(
1
b
)
”是真命題.
請(qǐng)針對(duì)以上閱讀材料中的f(x),解答以下問題:
(1)試用命題的等價(jià)性證明:“設(shè)a,b∈R+,若f(a)+f(b)>f(
1
a
)+f(
1
b
)
,則:ab>1”是真命題;
(2)解關(guān)于x的不等式f(ax-1)+f(2x)>f(a1-x)+f(2-x)(其中a>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
1-x
+
1+x
的最大值是
 
;最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A,B,C是三角形內(nèi)角,且∠B=60°,a+c=4,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過圓內(nèi)一點(diǎn)的最長(zhǎng)弦與最短弦所在直線方程分別為(a+1)x+(2a-1)y+a+8=0與ax-2y+4=0,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=sinxcosx+sin2x可化為
 

2
2
sin(2x-
π
4
)+
1
2
;
2
2
sin(2x+
π
4
)-
1
2

③sin(2x-
π
4
)+
1
2
;
④2sin(2x+
4
)+1.

查看答案和解析>>

同步練習(xí)冊(cè)答案