已知向量,函數(shù)
(1)求函數(shù)的最小正周期T及單調(diào)減區(qū)間;
(2)已知a,b,c分別為ABC內(nèi)角A,B,C的對(duì)邊,其中A為銳角,,,且.求A,b的長(zhǎng)和ABC的面積.

(1)單調(diào)遞減區(qū)間是 ;
(2) ,。

解析試題分析:(1) (2分)        
 (4分)
單調(diào)遞減區(qū)間是    (6分)
(2);  8分)
   (10分)
.  (12分)
考點(diǎn):本題主要考查正弦定理的應(yīng)用,平面向量的坐標(biāo)運(yùn)算,兩角和與差的三角函數(shù)。
點(diǎn)評(píng):典型題,本題解答思路明確,首先進(jìn)行向量的坐標(biāo)運(yùn)算,利用兩角和與差的三角函數(shù)公式進(jìn)行“化一”,進(jìn)一步研究函數(shù)的圖象和性質(zhì)。(2)應(yīng)用正弦定理進(jìn)一步確定得到三角形面積。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知.
(1)求sinx-cosx的值;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,三個(gè)內(nèi)角所對(duì)的邊分別為,,的面積等于.
(1)求的值;(6分)
(2)求.(4分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義在R上的函數(shù)f(x)=的周期為,且對(duì)一切xR,都有f(x) ;
(1)求函數(shù)f(x)的表達(dá)式; 
(2)若g(x)=f(),求函數(shù)g(x)的單調(diào)增區(qū)間;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)關(guān)于x的函數(shù)y=2cos2x﹣2acosx﹣(2a+1)的最小值為f(a),試確定滿(mǎn)足的a的值,并對(duì)此時(shí)的a值求y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),(其中),若直線(xiàn)是函數(shù)圖象的一條對(duì)稱(chēng)軸。

(1)試求的值;
(2)先列表再作出函數(shù)在區(qū)間上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求值(1)
(2)已知,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)
是否存在常數(shù),使得函數(shù)在閉區(qū)間上的最大值為1?若存在,求出對(duì)應(yīng)的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)已知函數(shù),
(1)當(dāng)時(shí),求的最大值和最小值
(2)若上是單調(diào)函數(shù),且,求的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案