若橢圓
x2
a2
+
y2
b2
=1的一個(gè)焦點(diǎn)和短軸的兩端點(diǎn)構(gòu)成一個(gè)正三角形,則該橢圓的離心率為(  )
A、
1
2
B、
3
2
C、
2
2
D、
2
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專(zhuān)題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)橢圓的短軸的兩個(gè)端點(diǎn)與橢圓的一個(gè)焦點(diǎn)構(gòu)成正三角形,得到a,b,c的關(guān)系,又根據(jù)橢圓的基本性質(zhì)可知a2=b2+c2,把可用b表示出c,然后根據(jù)離心率e=
c
a
,分別把a(bǔ)與c的式子代入,約分后即可得到值.
解答: 解:由題意,∵橢圓的短軸的兩個(gè)端點(diǎn)與橢圓的一個(gè)焦點(diǎn)構(gòu)成正三角形
3
b=c,3b2=c2
∵a2=b2+c2=
4
3
c2,
∴e=
c
a
=
3
4
=
3
2

故選:B.
點(diǎn)評(píng):此題考查學(xué)生掌握橢圓的簡(jiǎn)單性質(zhì),考查了數(shù)形結(jié)合的數(shù)學(xué)思想,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的奇數(shù)項(xiàng)成等差數(shù)列,偶數(shù)項(xiàng)成等比數(shù)列,公差與公比均為2,并且a2+a4=a1+a5,a4+a7=a6+a3.則使得am•am+1•am+2=am+am+1+am+2成立的所有正整數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x3+ax2+1(a∈R).
(1)函數(shù)y=f(x)是否可能在R上是單調(diào)函數(shù)?若可能,求出實(shí)數(shù)a的取值范圍.
(2)若函數(shù)y=f(x)在區(qū)間(0,
2
3
)上遞增,在區(qū)間(1,+∞)上遞減,求出實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)g(x)=3x,h(x)=9x
(1)解方程x+log3[2g(x)-8]=log3[h(x)+9];
(2)令p(x)=
g(x)
g(x)+
3
,計(jì)算:p(
1
2014
)+p(
2
2014
)+…+p(
2013
2014
);
(3)若f(x)=
g(x+1)+a
g(x)+b
=
3x+1+a
3x+b
是奇函數(shù),當(dāng)x≥1時(shí),滿(mǎn)足f[h(x)-1]+f[2kg(x)]>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)(x∈R)滿(mǎn)足f(x+2)=f(x),且x∈(-1,1]時(shí)f(x)=|x|,則函數(shù)f(x)的圖象與函數(shù)y=log2|x|的圖象的交點(diǎn)的個(gè)數(shù)是(  )
A、2B、3C、4D、多于4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求和:-2+22-23+24-25+…+2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校組織同學(xué)們參加紅色七日游---海上夏令營(yíng)活動(dòng),如圖,海中小島A周?chē)?0海里內(nèi)有暗礁,夏令營(yíng)的船只船向正南航行,在B處測(cè)得小島A在船的南偏東30°,船行30海里后,在C處測(cè)得小島A在船的南偏東45°,如果此船不改變航向,繼續(xù)向南航行,有無(wú)觸礁的危險(xiǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,∠ABC=90°,SA⊥平面ABC,過(guò)點(diǎn)A向SC和SB引垂線,垂足分別是P、Q,求證:
(1)AQ⊥平面SBC;
(2)PQ⊥SC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長(zhǎng)為a的正方形,側(cè)棱PD=a,PA=PC=
2
a.
(1)求證:PD⊥平面ABCD;
(2)求證:平面PAC⊥平面PBD;
(3)求證:∠PCD為二面角P-BC-D的平面角.

查看答案和解析>>

同步練習(xí)冊(cè)答案