過定點(diǎn)P(0,2),作直線l,使l與曲線y2=4x有且僅有1個公共點(diǎn),這樣的直線l共有


  1. A.
    1條
  2. B.
    2條
  3. C.
    3條
  4. D.
    4條
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•內(nèi)江二模)已知動圓P過定點(diǎn)F(0,-
2
)
,且與直線l相切,橢圓N的對稱軸為坐標(biāo)軸,一個焦點(diǎn)是F,點(diǎn)A(1,
2
)
在橢圓N上.
(1)求動圓圓心P的軌跡M的方程和橢圓N的方程;
(2)已知與軌跡M在x=-4處的切線平行的直線與橢圓N交于B、C兩點(diǎn),試探求使△ABC面積等于
3
2
的直線l是否存在?若存在,請求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•浦東新區(qū)二模)已知
i
=(1,0),
c
=(0,
2
)
,若過定點(diǎn)A(0,
2
)
、以
i
c
(λ∈R)為法向量的直線l1與過點(diǎn)B(0,-
2
)
c
i
為法向量的直線l2相交于動點(diǎn)P.
(1)求直線l1和l2的方程;
(2)求直線l1和l2的斜率之積k1k2的值,并證明必存在兩個定點(diǎn)E,F(xiàn),使得|
PE
|+|
PF
|
恒為定值;
(3)在(2)的條件下,若M,N是l:x=2
2
上的兩個動點(diǎn),且
EM
FN
=0
,試問當(dāng)|MN|取最小值時,向量
EM
+
FN
EF
是否平行,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2002年全國各省市高考模擬試題匯編 題型:013

過定點(diǎn)P(0,2)作直線l,使l與曲線=4(x-1)有且僅有1個公共點(diǎn),這樣的直線l共有

[  ]

A.1條
B.2條
C.3條
D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省高二5月教學(xué)質(zhì)量檢測理科數(shù)學(xué)卷(解析版) 題型:解答題

動圓M過定點(diǎn)A(-,0),且與定圓A´:(x-)2+y2=12相切.

(1)求動圓圓心M的軌跡C的方程;

(2)過點(diǎn)P(0,2)的直線l與軌跡C交于不同的兩點(diǎn)E、F,求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案