A. | 等邊三角形 | B. | 鈍角三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
分析 第一個等式變形后,利用余弦定理求出cosA的值,進(jìn)而求出A的度數(shù),第二個等式化簡,利用兩角和與差的正弦函數(shù)公式變形,得到B=C,即確定出三角形形狀.
解答 解:將(a+b+c)(b+c-a)=3bc,
整理得:(b+c)2-a2=3bc,即a2=b2+c2-bc,
由余弦定理得:cosA=$\frac{1}{2}$,
∵A為三角形內(nèi)角,
∴A=$\frac{π}{3}$,
∵sinA=2sinBcosC,且sinA=sin(B+C)=sinBcosC+cosBsinC,
∴sinBcosC-cosBsinC=sin(B-C)=0,
∴B-C=0,即B=C,
∵B+C=$\frac{2π}{3}$,
∴A=B=C=$\frac{π}{3}$,
則△ABC為等邊三角形.
故選:A.
點評 此題考查了正弦、余弦定理,兩角和與差的正弦函數(shù)公式,熟練掌握定理是解本題的關(guān)鍵,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{{\sqrt{5}}}{5}$ | B. | -$\frac{2}{5}\sqrt{5}$ | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $\frac{2}{5}\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 10×219 | C. | -10×218 | D. | -3×218 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com