7.已知直線l:y=k(x-1)與拋物線C:y2=4x相交于A、B兩點(diǎn),過AB分別作直線x=-1的垂線,垂足分別是M、N.那么以線段MN為直徑的圓與直線l的位置關(guān)系是( 。
A.相交B.相切C.相離D.以上都有可能

分析 先由拋物線定義可知AM=AF,可推斷∠1=∠2;又根據(jù)AM∥x軸,可知∠1=∠3,進(jìn)而可得∠2=∠3,同理可求得∠4=∠6,最后根據(jù)∠MFN=∠3+∠6,則答案可得.

解答 解:如圖,由拋物線定義可知AM=AF,故∠1=∠2,
又∵AM∥x軸,
∴∠1=∠3,從而∠2=∠3,同理可證得∠4=∠6,
而∠2+∠3+∠4+∠6=180°,
∴∠MFN=∠3+∠6=$\frac{1}{2}$×180°=90°,
∴以線段MN為直徑的圓與直線l的位置關(guān)系是相切,
故選B.

點(diǎn)評(píng) 本題主要考查拋物線的性質(zhì).要熟練掌握拋物線的定義并能靈活運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列命題:
(1)若“a2<b2,則a<b”的逆命題;
(2)“全等三角形面積相等”的否命題;
(3)“若a>1,則ax2-2ax+a+3>0的解集為R”的逆否命題;
(4)“若$\sqrt{3}$x(x≠0)為有理數(shù),則x為無理數(shù)”.
其中正確的命題序號(hào)是(  )
A.(3)(4)B.(1)(3)C.(1)(2)D.(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.實(shí)數(shù)a,b滿足2a+2b=1,則函數(shù)f(x)=x2-2(a+b)x+2在[-2,2]上( 。
A.單調(diào)遞增B.單調(diào)遞減C.先增后減D.先減后增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某公司即將推車一款新型智能手機(jī),為了更好地對(duì)產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購(gòu)買該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購(gòu)買意愿的問卷調(diào)查,若得分低于60分,說明購(gòu)買意愿弱;若得分不低于60分,說明購(gòu)買意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購(gòu)買該款手機(jī)與年齡有關(guān)?
購(gòu)買意愿強(qiáng)購(gòu)買意愿弱合計(jì)
20-40歲
大于40歲
合計(jì)
(2)從購(gòu)買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,求這2人都是年齡大于40歲的概率.
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x,-1<x<2}\\{\frac{{x}^{2}}{2},x≥2}\end{array}\right.$,則f(f($\frac{3}{2}$))=$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在研究色盲與性別的關(guān)系調(diào)查中,調(diào)查了男性500人,其中有50人患色盲,調(diào)查的500個(gè)女性中10人患色盲,
(1)根據(jù)以上的數(shù)據(jù)建立一個(gè)2*2的列聯(lián)表;
(2)能否在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為“性別與患色盲有關(guān)系”?說明你的理由.(注:P(K2≥10.828)=0.001)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.有10道數(shù)學(xué)單項(xiàng)選擇題,每題選對(duì)得4分,不選或選錯(cuò)得0分.已知某考生能正確答對(duì)其中的7道題,余下的3道題每題能正確答對(duì)的概率為$\frac{1}{3}$.假設(shè)每題答對(duì)與否相互獨(dú)立,記ξ為該考生答對(duì)的題數(shù),η為該考生的得分,則P(ξ=9)=$\frac{2}{9}$,Eη=32(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.袋中裝有大小相同的四個(gè)球,四個(gè)球上分別標(biāo)有數(shù)字“2”,“3”,“4”,“6”.現(xiàn)從中隨機(jī)選取三個(gè)球,則所選的三個(gè)球上的數(shù)字能構(gòu)成等差數(shù)列的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知命題p:“m=-1”,命題q:“直線x-y=0與直線x+m2y=0互相垂直”,則命題p是命題q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要

查看答案和解析>>

同步練習(xí)冊(cè)答案