已知曲線C1:y2=2x與C2:y=
12
x2
在第一象限內(nèi)交點(diǎn)為P.
(1)求過點(diǎn)P且與曲線C2相切的直線方程;
(2)求兩條曲線所圍圖形(如圖所示陰影部分)的面積S.
分析:(1)先通過解方程組求交點(diǎn)P的坐標(biāo),再根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)在x=2處的導(dǎo)數(shù),從而得到切線的斜率,再利用點(diǎn)斜式方程寫出切線方程即可.
(2)先確定積分區(qū)間,再確定被積函數(shù),從而可求由兩條曲線曲線C1:y2=2x與C2:y=
1
2
x2
所圍圖形的面積.
解答:解:(1)曲線C1:y2=2x與C2:y=
1
2
x2
在第一象限內(nèi)交點(diǎn)為P(2,2)
C2:y=
1
2
x2
的導(dǎo)數(shù)y'=x
y'|x=2=2
而切點(diǎn)的坐標(biāo)為(2,2)
∴曲線C2:y=
1
2
x2
在x=2的處的切線方程為y-2=2(x-2),即2x-y-2=0.

(2)由曲線C1:y2=2x與C2:y=
1
2
x2
可得兩曲線的交點(diǎn)坐標(biāo)為(0,0),(2,2)
∴兩條曲線所圍圖形(如圖所示陰影部分)的面積:
S=
2
0
2x
-
1
2
x2
)dx=(
2
×
2
3
x 
3
2
-
1
6
x3
|
2
0
=
4
3
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,定積分在求面積中的應(yīng)用,考查運(yùn)算求解能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1:x2+y2+2kx+(4k+10)y+10k+20=0 (k≠-1),當(dāng)k取不同值時,曲線C表示不同的圓,且這些圓的圓心共線,則這條直線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知曲線C1:x2+y2=1(|x|<1),C2:x2=8y+1(|x|≥1),動直線l與C1相切,與C2相交于A,B兩點(diǎn),曲線C2在A,B處的切線相交于點(diǎn)M.
(1)當(dāng)MA⊥MB時,求直線l的方程;
(2)試問在y軸上是否存在兩個定點(diǎn)T1,T2,當(dāng)直線MT1,MT2斜率存在時,兩直線的斜率之積恒為定值?若存在,求出滿足的T1,T2點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1:y2=2x與C2:y=在第一象限內(nèi)交點(diǎn)為P.

(1)求過點(diǎn)P且與曲線C2相切的直線方程;

(2)求兩條曲線所圍圖形(如圖所示陰影部分)的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省巢湖市無為縣開城中學(xué)高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知曲線C1:y2=2x與C2:y=在第一象限內(nèi)交點(diǎn)為P.
(1)求過點(diǎn)P且與曲線C2相切的直線方程;
(2)求兩條曲線所圍圖形(如圖所示陰影部分)的面積S.

查看答案和解析>>

同步練習(xí)冊答案