19.在△ABC中,角A、B、C所對(duì)邊的長(zhǎng)分別為a、b、c,若b=1,A=2B,則$\frac{a}{cosB}$的值等于( 。
A.3B.$\frac{1}{2}$C.1D.2

分析 運(yùn)用二倍角正弦公式和正弦定理,代入計(jì)算即可得到所求值.

解答 解:若b=1,A=2B,
即有sinA=sin2B=2sinBcosB,
由正弦定理可得a=2bcosB,
則$\frac{a}{cosB}$=2b=2.
故選:D.

點(diǎn)評(píng) 本題考查解三角形的正弦定理,以及二倍角的正弦公式的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知$sinα=\frac{1-m}{1+m},cosα=-\frac{3}{5}$,則m=$\frac{1}{9}$或9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)=$\root{3}{x+3}$+ln(6-x)的定義域是( 。
A.{x|x<6}B.{x|-3<x<6}C.{x|x>-3}D.{x|-3≤x<6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.各項(xiàng)為正的等比數(shù)列{an}中,a6與a12的等比中項(xiàng)為3,則log3a7+log3a11=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,菱形ABCD的邊長(zhǎng)為4,∠BAD=60°,AC∩BD=O.將菱形ABCD沿對(duì)角線AC折起,得到三棱錐B-ACD,點(diǎn)M是棱BC的中點(diǎn),DM=2$\sqrt{2}$

(I)求證:OD⊥平面ABC;
(Ⅱ)求直線MD與平面ABD所成角的正弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知$tan(α-β)=\frac{1}{2}$,$tanβ=-\frac{1}{7}$,則tanα等于$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列說(shuō)法中正確的為( 。
A.y=f(x)與y=f(t)表示同一個(gè)函數(shù)
B.y=f(x)與y=f(x+1)不可能是同一函數(shù)
C.f(x)=1與f(x)=x0表示同一函數(shù)
D.定義域和值域都相同的兩個(gè)函數(shù)是同一個(gè)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.正方體ABCD-A1B1C1D1的棱長(zhǎng)為a.E為棱AA1的中點(diǎn),
(1)求三棱錐E-BCD1與三棱錐A-CDB1的體積比為.
(2)求三棱錐B-A1C1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知直線m和不同的平面α,β,下列命題中正確的是(  )
A.$\left.\begin{array}{l}α⊥β\\ m⊥β\end{array}\right\}⇒m∥α$B.$\left.\begin{array}{l}α⊥β\\ m?α\end{array}\right\}⇒m⊥β$C.$\left.\begin{array}{l}m∥α\\ m∥β\end{array}\right\}⇒α∥β$D.$\left.\begin{array}{l}α∥β\\ m?α\end{array}\right\}⇒m∥β$

查看答案和解析>>

同步練習(xí)冊(cè)答案