3.已知集合A={x|x2-1=0},B={-1,2,5},則A∩B=( 。
A.{-1,2}B.{-1}C.{-1,5}D.

分析 由A與B,求出兩集合的交集即可.

解答 解:∵集合A={x|x2-1=0}={-1,1},B={-1,2,5}
∴A∩B={-1},
故選:B.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若f(x)=x-1-alnx(a∈R),g(x)=$\frac{{e}^{x}}{x}$
(1)當(dāng)a=$\frac{1}{e}$時,求函數(shù)f(x)的最值;
(2)當(dāng)a<0時,且對任意的x1,x2∈[4,5](x1≠x2),|f(x1)-f(x2)|<|g(x1)-g(x2)|恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列關(guān)系中,正確的是(  )
A.$\sqrt{2}$∈NB.$\frac{1}{2}$∈ZC.∅?{0,1}D.$\frac{1}{2}$∉Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x+y≤6\\ x-y≤2\\ x≥0\\ y≥0\end{array}\right.$,則z=2x+y的最大值是( 。
A.4B.6C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$f(x)=\left\{\begin{array}{l}2a-(x+\frac{4}{x}),x<a\\ x-\frac{4}{x},x≥a\end{array}\right.$.
①當(dāng)a=1時,f(x)=3,則x=4;
②當(dāng)a≤-1時,若f(x)=3有三個不等實數(shù)根,且它們成等差數(shù)列,則a=$-\frac{11}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知雙曲線C的中心在原點且對稱軸為坐標(biāo)軸,C的一條漸近線與焦點為F的拋物線y2=8x交于點P,且|PF|=4,則雙曲線的離心率為$\sqrt{5}$或$\frac{{\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.點P為棱長是$2\sqrt{5}$的正方體ABCD-A1B1C1D1的內(nèi)切球O球面上的動點,點M為B1C1的中點,若滿足DP⊥BM,則動點P的軌跡的長度為( 。
A.πB.C.D.$2\sqrt{5}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知定義域為R的奇函數(shù)f(x)滿足f(x+1)=f(3-x),當(dāng)x∈(0,2]時,f(x)=-x2+4,則函數(shù)y=f(x)-a(a∈R)在區(qū)間[-4,8]上的零點個數(shù)最多時,所有零點之和為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,∠BAC=90°,AB=3,AC=4,若點D、E都在邊BC上,且∠BAD=∠CAE=15°,則$\frac{BD•BE}{CD•CE}$=$\frac{9}{16}$.

查看答案和解析>>

同步練習(xí)冊答案